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Abstract

Soft robotics, and particularly soft gripping technology, faces many challenges.

Due to several strict requirements such as small dimensions, low cost and effi-

cient manufacturing process, accurate sensing capabilities, the development of

soft grippers is still an open research problem. In this work a hemispherical

deformable and cheap to manufacture tactile sensor is proposed and charac-

terized. The device is 3D printed using a stereolithography (SLA) 3D printer

and is made of a semi-transparent elastic polymer resin that is properly cured

afterwards. The overall aim is to sense normal and tangential forces applied to

the gripper. The gripper is designed and thought for agricultural applications

such as grasping delicate fruits and vegetables.
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Chapter 1

Introduction

In this chapter the Master’s Thesis’ work is motivated. Agriculture 4.0, in-

dustrial automation and soft robotics can help to transition towards a more

sustainable and efficient harvesting process. At the end of Chapter 1 will be

briefly explained how the rest of the work is structured.

1.1 Problem statement

1.1.1 How to cope with the increasing food demand

As stated by several papers [7, 47, 65, 30] and well respected institutions, agri-

culture is required to significantly grow its productivity to keep up with the

rising global food demand. The United Nations Food and Agricultural Orga-

nization (FAO) foresees that “food and feed production will need to increase

by 70% by 2050 in order to meet the world’s food needs” [65]. Making harder

to accomplish such a result is the shortage of workers in this field, due to the

time consuming and labour intensive activities they’re asked to stand up to,

while being often exploited and underpaid [11, 8]. The main reasons of the de-

clining trend in agricultural interest are: high land, real estate, machinery and

1



Chapter 1 Introduction 2

agrotechnology prices; unequal work-life balance; lack of government incentives

and, in most cases, poor working conditions. Also, the agricultural industry

is having troubles competing with corporate jobs that offer higher pay and

smart-working options. All of this translates in fewer young farmers coming

in to fill the shoes of retired ones. In addition, the global COVID-19 pan-

demic has “increased the need of industrial automation for relieving workforce

challenges and increasing operational and food safety in factory environments”

[30].

1.1.2 Agriculture 4.0 and the role of soft robotics

It’s known that from roman and greek times, if not even before, humans are

trying to automate as much as possible laborious and repetitive tasks, making

use of the available technology. As an example, romans used a so called “Gallo-

Roman harvester” shown in Figure 1.1 to speed up the grain harvesting process.

Figure 1.1: On the left a sculpture depicting an ancient roman harvester called Gallic

Vallus; on the right a modern combine harvester designed for grain, potatoes, carrots, beets.

Nowadays automation plays a big role in the farming industry minimiz-

ing waste of products, time and optimizing the crop production cycle. An

increasing number of companies are working on robotics innovation to de-

velop drones, autonomous tractors, robotic harvesters, automatic watering,

and seeding robots [30]. The main goal is to address or at least help with the

previously mentioned issues that affect the agriculture sector. Agriculture



Chapter 1 Introduction 3

4.0 , also called precision agriculture refers to the use of Internet of Things

(IoT), big data, Artificial Intelligence (AI) and robotics to make the entire

production chain more efficient. Technological innovation is exploited to col-

lect, transmit and precisely analyze data from the field. Data gathered from

sensors is then elaborated with the aim of supporting farmers in the decision-

making process related to their activities. The ultimate goals are “increasing

economic, environmental, and social sustainability - as well as profitability -

of agricultural processes” [2].

The main benefits of Industry 4.0 in the context of agriculture are:

• avoiding unnecessary waste (e.g. computing the exact water require-

ments of the crop);

• minimizing costs by planning and predicting all stages of cultivation,

from land preparation and sowing to harvesting;

• improving the traceability of the supply chain thus the food quality in a

sustainable manner.

Although more and more companies are now using high-tech devices and sen-

sors to ease the farmers’ work, making them able to concentrate on higher

level tasks, there’s still plenty to be discovered in this field. In this regard,

a relatively new research branch is focusing on soft robotics and in particular

soft grippers. Soft robotics is a subfield of robotics concerning the design,

control, and fabrication of robots composed of compliant materials, instead of

rigid links. Figure 1.2 shows two examples of soft grippers designed by the U.S.

company Soft Robotics [66]. The depicted mGrip modular gripping system is

fully configurable and is thought for safely and efficiently picking and packing

delicate products such as food.
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Figure 1.2: Soft Robotics’ mGrip: a modular gripping system that enables reliable, high-

speed picking of traditionally hard-to-grasp single items.

In the last decades the ongoing trend in robotics points towards collabora-

tive robots that can operate outside of a cage, interacting with humans and the

surrounding environment. Soft robots, not only aim at being safer for humans

but may solve many open issues in robotics. In fact, being compliant, they’re

flexible, harder to break or damage, adaptable to unstructured and dynamic

environments. They can meet hygiene and strict manipulation requirements

while operating with delicate or fragile products, making them desirable in

the agriculture and food industries. Also, in a pick-and-place task they don’t

require an in-depth characterization of the object to handle, ensuring good

performance even without any force feedback. In general, soft robotic grip-

pers allow a simpler control architecture than traditional rigid robots. In fact,

most soft grippers are underactuated, meaning that the control inputs are

less than the achievable degrees of freedom. By replacing the intricate rigid

body joint mechanics with simple compliant mechanisms, the number of parts

required is significantly reduced, leading to lower costs for maintenance and

assembly.
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1.1.3 Do all have the means to face a transition?

Global agriculture has been constrained by many factors, such as socioeco-

nomic issues, climate change, desertification and diminished crop yields, at-

tributed to the decrease of vital nutrients in agricultural lands [39]. Despite

the compelling evidence supporting agricultural automation, critics have ar-

gued that developing countries, including those in Sub-Sahara Africa, are less

equipped for the transition to Agriculture 4.0 [39]. In fact, it’s not clear how

those countries would be supplied with new technology, especially soft robots.

As mentioned, Europe is experiencing an intense labour shortage in this field,

thus soft robotics and seeding/planting equipments would be a valid solution.

On the other hand, developing nations in Africa have a critical mass of un-

employed youth [39] but this is not enough to transition to a more automated

harvesting process. According to Food and Agriculture Organization of the

United Nations (FAO) [73], “digital innovations in mechanization technologies

can make agriculture more attractive to rural youth, especially in developing

countries”. Such a high unemployed youth offers the opportunity to create new

and more attractive jobs to leave behind rudimentary hand tools. According

to FAO, governments should be provided with the necessary technical support

to transform agriculture in a sustainable way; the initiative is aligned with the

Framework for Sustainable Agricultural Mechanization in Africa (SAMA) and

Asia (SAM).

Over the years, agricultural mechanization has evolved from basic hand

tools and animal-driven implements to engine-powered equipments, but not

uniformly all over the world. In fact, manual tools and animal power are still

commonly used in developing countries, negatively affecting the livelihoods of

small-scale farmers and their productivity [73].

Economic incentives to help with the transition to Agriculture 4.0 are tak-
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ing place also in Italy for several years. As reported by a recent article on

this topic [51], it’s important not only to offer incentives but also to communi-

cate them effectively in order to reach most of the farmers and small-medium

enterprises. Supporting this statement, 87% of big companies know and use

some of the current concessions, but only 59% of the smaller companies know

about them. To be able to adopt new technology such as agrobots (robots for

agriculture), a certain level of understanding of the robotic device is required:

a good farmer is not necessarily expert in digital technologies and automation.

Some of the farmers’ reluctance is due to: a not so straightforward process,

lack of continuous support and training, and absence of external incentives

(e.g. policies or market prices) [39]. Also, to achieve the best results, the farm

system and farmers’ workflow itself must adapt to the robots. For instance,

spacing between crops and crop structures needs to match the operational pa-

rameters of the agrobot as it moves among the cultivated crops. Of course,

purchase price of the device has to be taken into account as it could be unsus-

tainable for medium-small farms. This can become less of a problem for large

commercially oriented farms where high labour costs during harvest season

can be attenuated through automation. FAO presents the need to find prof-

itable business models where the farmer does not necessarily own the robot

but can benefit from the technology. Two possible solutions, already in place

in many farming systems, are service provision and cooperative ownership. To

conclude, a recent study [73] summarizes the main benefits for Agriculture

4.0 in developing countries and particularly in Vietnam. It reports that at

this stage “the agriculture of Vietnam is still dominated by individual house-

holds with small scale production and low skill techniques. However, there is a

growing trend of private investment in agriculture, which apply modern tech-

niques, from both foreign and domestic investors. More interestingly, there are
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companies now specializing in technical solutions for agriculture”.

1.2 Thesis structure

This Master’s Thesis focuses on the research, development and characterization

of a marker-based hemispherical soft gripper capable of sensing forces when in

contact with the external environment.

The work is structured as follows:

• Chapter 2 presents an overview about soft robotics and soft grippers as

a possible solution to the problems the agricultural industry faces nowa-

days. The main state-of-the-art soft gripping approaches are discussed

and an overview of the open issues in this field is reported;

• Chapter 3 addresses the prototyping and manufacturing phase explain-

ing the main steps to develop the sensing device. The exploited experi-

mental setups are briefly presented, while the final part of the Chapter

explains the implemented offline pipeline to create the dataset. Also,

some approaches for 3D shape reconstruction inspired from state-of-the-

art similar or somehow related work, that turned out to be not very

accurate, are nonetheless shown;

• Chapter 4 is dedicated to the experimental results. The developed of-

fline and online pipelines’ outputs are shown and commented. In this

Chapter the mainly faced problems and solutions are discussed. More-

over, all the exploited algorithms, Machine Learning and Deep Learning

estimation approaches are cited and briefly explained. Finally, using the

developed setup mounted on the Franka Emika Panda robot a simple

picking task is attempted and the qualitative results are reported.





Chapter 2

Overview of soft robotics in

agriculture

In this Chapter the soft-gripping technology is introduced and presented as a

possible solution to many problems the agricultural industry is currently facing.

An overview about the available technologies on the market is presented and

the publications related to the case study are briefly summarized.

2.1 Soft grippers

2.1.1 A brief introduction to robotic grippers

Grasping and manipulation are fundamental functions that require interaction

with the surrounding environment. Grasping can be described as the “abil-

ity to pick up and hold an object against external disturbances” [63], while

manipulation is the ability to exert forces on an object, causing its rota-

tion and displacement with respect to the manipulator’s reference frame. A

robotic gripper is a robotic end-effector that can be mounted on a robotic

8
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arm, acting like a tool or, specifically, a hand for grasping, picking and placing

objects. Traditionally, robotic grippers are made of rigid joints and links and

they’re actuated through electric motors inside the structure. In alternative

they can be actuated through cables or tendons, as shown in Figure 2.1. Grip-

per designs range from two-fingered grippers to anthropomorphic hands with

articulated fingers and palm (Figure 2.1) [63]. In fact, their design is often

inspired to human or animal features to achieve dexterity (the ability to per-

form non-trivial action quickly and skilfully with the hands) and compliance

(flexibility and elastic deformability). In Figure 2.2 three grippers from the

ROBOTIQ company [56] are shown. They’re all designed to be mounted on

collaborative robots for precision assembly tasks. Moreover, in Figure 2.3 there

are vacuum grippers produced by different manufacturers, such as Universal

Robots [72], OnRobot [49] and Joulin [35]. The latter proposes “The Foam

Gripper” which is characterized by a foam suction cup that is insensitive to

porosities.

Figure 2.1: On the left an “integrated linkage-driven dexterous anthropomorphic robotic

hand” [38] while on the right a soft anthropomorphic hand [7].

One of the main challenges of rigid anthropomorphic grippers is handling

soft and deformable objects like fruits or vegetables that require an additional

care during manipulation. The so called soft grippers are trying to address

some of those problems avoiding the high mechanical and control complexity
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Figure 2.2: From left to right: ROBOTIQ Hand-E Adaptive Gripper, 2F-85 Gripper and

3-Finger Adaptive Robot Gripper.

Figure 2.3: From left to right: Universal Robots ZXP7*01 Vacuum Unit, OnRobot VG10

Vacuum gripper and Joulin Foam Gripper.

of classical grippers required to achieve “software compliance”. In fact, they

allow a simpler controllability and adaptability to dynamic environments, while

being robust, durable, versatile and inherently compliant thanks to the soft

materials. Underactuation, that denotes a lower number of actuators than

degrees of freedom, is fundamental to have a simpler controllability: as an

example, human fingers can be seen as the composition of one tendon and

three links, meaning two degrees of freedom given a single control input.

Also, robotic grippers can be equipped with sensors to estimate position

and velocity of the gripper elements (e.g. with Hall-effect sensors, encoders,

torque sensors) and with sensors to retrieve information about the in-contact
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objects or applied external forces (e.g. pressure, force, torque sensors, optical

sensors, resistive, conductive and electromagnetic sensors).

2.1.2 Soft gripping technologies for agriculture

According to [63], soft gripping technologies can be classified in three macro

categories, even though they’re not exclusive and many devices make use of

combinations of two technology classes to reach higher performance:

• Actuation: passive structure with external motors, fluidic elastomer

actuators (FEAs), electroactive polymers, shape memory alloys (SMAs);

• Controlled stiffness: granular jamming, low melting point alloys

(LMPAs), electro-rheological (ER) and magneto-rheological (MR) flu-

ids, shape memory polymers (SMPs);

• Controlled adhesion: electro-adhesion, geckoadhesion (dry adhesion).

Gripping by actuation consists of bending gripper fingers or elements

around the object, as we do with our fingers when picking up an egg or a glass

of water. The bending shape can be actively controlled, otherwise contact with

the object can be exploited to induce deformation [63].

Gripping using controlled stiffness exploits the large change in rigidity

of some materials to hold the target object. An actuator is needed to envelop

the object with part of the gripper and while it’s soft the applied force can

be very low, allowing the manipulation of delicate objects. Such grippers are

fast and allow tuning of the stiffness to a desired level but its range can be

limiting.

Gripping using controlled adhesion, similarly to variable stiffness, re-

quires an actuation method to partially envelop the object. Controlled ad-

hesion relies on surface forces at the interface between gripper and object.
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This operating principle is a major advantage when manipulating very deli-

cate objects, as it avoids the high compression forces required in gripping by

actuation. Also, it’s an ideal method for flat objects or objects that can’t be

enveloped but requires clean, relatively smooth and dry surfaces.

As described in [47] additional criteria to choose the gripper’s technology

could be: target object size, gripper size, lifting capabilities and ratio between

gripper’s and object’s masses. Also, power consumption, controllability ease

(open loop), scalability, modularity, adaptability to various target objects.

Response time, surface-related requirements, bio-compatibility, robustness in

unstructured environments, compliance, lifetime can all affect the efficiency

of the agriculture task. Figure 2.4 shows a brief timeline of milestones in

the development of soft gripper technologies according to [63], starting from

the late 70s’ tendon driven grippers to 2017’s FEAs using thermo-reversible

Diels-Alder polymers.

According to the mentioned requirements, the most suitable and commonly

used technologies are:

• Granular jamming: reacting to external variables such as chemical

concentration, humidity, or light, they achieve good lifting ratio, response

time and ability to lift medium-size fruits;

• Passive structures with external motors and FEA actuators:

ideal for fruit harvesting grippers, high lifting ratio, wide object size

range, good response time, ability to grasp any object.

Soft components typically used in the grippers’ actuators include urethanes,

hydrogels (invisible in aqueous environments), hydraulic fluids and polymers,

such as silicone elastomers [47, 63]. Actuators based on silicone elastomers

have attracted strong interest due to their low cost and ease of manufacture;
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Figure 2.4: A brief timeline of milestones in the development of soft gripper technologies

as presented in [63].

they do not require the use of complex machinery or skilled labour. In addition,

these compliant materials are also advantageous when considering the safety

of interaction with biological products, making them appropriate candidates

for agricultural applications.

2.1.3 State-of-the-art of soft grippers

In the field of soft robotics, there’s still plenty of room for improvement of soft

actuators designed for picking, placing and harvesting fruits and vegetables.

Handling this type of products requires precise control of the gripper to suc-

cessfully follow the picking pattern’s movements without causing any damage

to the fruit. In literature [47] the main capabilities of an ideal picking robot
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would be:

• 3D localization of fruits inside the plant;

• path and trajectory planning;

• application of the suited fruit detachment method;

• adequate storage of the fruit.

All of this should be carried out with the aim of increasing the harvest ratio

between robotic and manual picking, increasing the harvested fruit quality, be-

ing economically justified. End-effectors are required to appropriately handle

fruits to preserve their quality, meaning their value on the market.

Soft grippers are considered to be one of the best solutions for harvesting

crops, thanks to their adaptability and delicacy when grasping and manipulat-

ing the target products. By using materials with a module of elasticity similar

to biological materials, soft grippers ensure safe interaction with humans and

the working environment. Table 2.1 summarizes the most recent proposals for

food soft grippers [47].

Regarding commercially available soft grippers, in 2015 the company Soft

Robotics [66] introduced mGrip: a pneumatically powered gripper made of

soft elastomers. As shown in Figure 2.5, it consists of a network of parallel

air chambers embedded in the elastomer thanks to which a single pneumatic

source can control the device. So, compliance is achieved without hard linkages,

additional sensors or a vision system. This modular gripper can be set up as

two opposing fingers or multiple fingers placed in a circular pattern.

Festo [19] is an industrial automation company that produces collaborative

robots with soft grippers attached (examples in Figure 2.6 and 2.7). Bion-

icSoftArm is a robotic arm that in its largest version has seven pneumatic
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Soft technology

and year
Grasped object

Object size

or weight
Gripper type Controllability

FEAs (2020) Lettuce 50x250mm
2 pneumatic actuators and

a blade (8kg, 450x450x300mm)

Close-loop with

force feedback

FEAs (2010)
Apple, tomato,

strawberry, carrot
69mm; 5-150g

Magnetorheological gripper

(finger size: 82x16x15mm)
PID

FEAs (2017) Cupcake 75.2g
Soft fingers

(finger length: 97mm)
Open-loop

FEAs (2020) Orange 1kg
Soft fingers

(finger size: 95x20x18mm)
Open-loop

FEAs (2020) Tomato, kiwifruit 46-76mm
4 soft chambers in circular shell

(diameter: 46mm; height: 30mm)
Open-loop

Tendon-driven (2020) Tomato 500g 3 soft finger design
Pre-programmed

motors’ rotation

FEA-tendon driven (2019) Banana, apple, grapes 2.7kg
3 soft finger design with

a suction cup (390g)
Teleoperation

Topology optimized soft actuators
Apple, grapefruit,

guava, orange, kiwi
1.4kg 2 compliant fingers Open-loop

Table 2.1: A brief summary of Table 4 reported in “Soft Grippers for Automatic Crop

Harvesting: A Review” [47] as a literature review of food soft grippers.

actuators and as much degrees of freedom. It can be equipped with various

adaptive grippers for pick and place tasks such as FlexShapeGripper, in-

spired to the behaviours of a chameleon; MultiChoiceGripper, an adaptive,

flexible handling system inspired to the opposable thumb; TentacleGripper,

an octopus-inspired gripper which wraps around objects like an octopus’s arm

and then uses vacuum suction cups to hold it firmly in place.

Hank soft gripper from Cambridge Consultants [10] attempts to emulate

the human hands’ four fingers and opposable thumb that allow a sophisticated

sense of touch and slip using sensors embedded in its individual pneumatic

fingers (Figure 2.8 shows the Hank soft gripper). These sensors are embedded

during the molding process inside its hollow silicone fingers, that are actuated

pneumatically. Based on the deformation of the fingers, the applied force is

measured and the force feedback closure is provided.

Finally, the increasing pressure for environmentally friendly technologies
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Figure 2.5: Soft Robotics’ mGrip modular soft gripper.

Figure 2.6: On the left Festo FlexShapeGripper and on the right Festo TentacleGripper.

Figure 2.7: Festo BionicSoftArm equipped with a flexible MultiChoiceGripper.

has induced researchers to explore soft grippers made of biodegradable, and

even edible, materials [63].
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Figure 2.8: Cambridge Consultants’ Hank soft gripper.

2.1.4 Soft grippers’ materials and manufacturing pro-

cess

According to [63], soft grippers are made of urethanes, hydrogels, braided

fabrics, hydraulic fluidics and polymers, such as silicone elastomers, which be-

came very desirable thanks to their low cost and simplicity to manufacture.

The most commonly used soft materials that reside in the silicone elastomers

category are: Dragon Skin, Ecoflex, polydimethylsiloxane (PDMS), Elastosil

M4601 and Smooth-Sil. Other polymers are Agilus30/VeroClear, ultra-high

molecular weight polyethylene, electrostatic discharge (ESD) plastic sheet,

thermoplastic elastomers (TPEs) and thermoplastic polyurethane (TPU). An

important aspect for the suitability of soft grippers in the agricultural sector,

as suggested by [63], is that the materials they’re made of mustn’t contami-

nate the food. This topic should be investigated more, to understand if soft

grippers’ degradation may leave particles on the manipulated crops. Table 2.2

summarizes the main advantages of the mentioned materials.

Regarding the manufacturing process, several approaches can be men-

tioned:

• Moulding : fused material is placed inside a (typically 3D printed) mold
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Soft material Main specifications Shore hardness

Dragon Skin, Ecoflex, Smooth-Sil Versatile, easy to use and handle, low cost 10 to 50 Shore A

Elastosil M4601
Highly resistant to bending and elongation;

low viscosity in its uncured form; easy to mold
Approximately 28 Shore A

PDMS

High elasticity; it is a thermosetting polymer,

obtained by irreversibly hardening (curing) a soft

solid or viscous liquid prepolymer (resin).

Precisely mathematically modellable through Finite

Element Method (FEM) analysis. The variation in its

hardness through several mixing ratios has been

extensively studied in the literature.

Approximately 50 Shore A

TPU and TPE

Can be 3D printed. Also, TPU-95 is very durable

suitable for agricultural environments, where

harmful collisions with objects are frequent.

85 Shore A

Table 2.2: A summary of the main materials’ characteristics used in soft grippers men-

tioned in [47].

and removed after hardening. It can be done manually or through Fused

Deposition Modelling (FDM) printers;

• Shape Deposition Manufacturing (SDM): suitable for 3D soft ac-

tuators made of multiple materials with different properties;

• Soft lithography : suited for developing multichannel soft actuators;

• Virtual lost-wax casting : a variant of a technique normally applied to

cast metal. In this case, the final part to be obtained is virtually designed

(CAD) and a virtual mold is created by inverting the part design. This

mold is then 3D printed and filled with uncured silicone. After curing,

the mold is destroyed using a solvent;

• Soft 3-D printing : the most promising technology due to the elimina-

tion of several moulding stages, which makes the manufacturing process

easier and allows the design of more complex inner chambers or pneu-

matic networks.



Chapter 2 Overview of soft robotics in agriculture 19

In [29] a multi-fingered soft gripper design that comprises hydraulic-driven

and sheet-shaped fabric bending actuators is proposed. In [44] a bioinspired

soft robotic gripper for adaptable grasping is proposed. The manufacturing

process involves molding and casting of the Dragon Skin 30 silicone inside the

molds. In [25] both hybrid robotic gripper and a complete soft robotic gripper

are proposed. They are characterized by retractable telescopic inflatable fin-

gers. This design is thought to be exploited in unknown environments due to

their high conformability and compactness. As shown in Figure 2.9, telescopic

mechanisms are made of urethane rubber (Smooth-On Vytaflex 40) while the

claws are 3D printed with PLA (PolyLactic Acid) material, and driven via

rack and gear couplings connected to three Robotics Dynamixel XM430-W350

smart actuators.

Figure 2.9: From left to right: a soft fabric gripper with gecko adhesion; a bioinspired

soft gripper made of Dragon Skin 30 silicon; a hybrid/soft robotic gripper made of urathen

rubber.

2.1.5 Controlling a soft gripper

As previously mentioned, soft actuators are deformable and compliant, which

translates into a large intrinsic number of degrees of freedom. How a soft
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actuator is controlled highly depends on the chosen materials and the control

complexity can be reduced based on the design. Soft grippers are often cited as

an example of morphological computation meaning that control complex-

ity is reduced by material softness and mechanical compliance [63]. Several

control strategies have been proposed for FEA-type actuator technology such

as Proportional-Integral-Derivative (PID) control, closed loop curvature con-

trol, real-time Artificial Neural Network (ANN) control. However, open-loop

control is one of the most frequently used. According to a recent review [47],

difficulties can be encountered while controlling certain types of FEA soft ac-

tuators and passive structures actuated by external motors or tendon motors,

due to their deflection around the object.

2.2 Agricultural practices’ automation

2.2.1 Harvesting process classification

Harvesting is a process that comes into play right at the final stage of fruit

development and determines the fruit quality. It is important to harvest fruits

and vegetables at the proper stage of maturity in order to maintain their nu-

trient quality and freshness for prolonged period of time [30]. Nowadays, the

majority of fruits used for fresh consumption are harvested by hand, and a

mechanical harvester may take care of those used for processing. Hand har-

vesting requires quite a long time and excessive labour use, while mechanical

harvesting has a greater efficiency. According to a recently published (2021)

review paper [47], mechanical harvesting methods can be divided into:

• Indirect harvesting: a force is applied to the plant without making

a direct contact with fruits; involves methods such as air blasting, limb
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shaking, trunk shaking and canopy shaking (typically used for olives,

almonds, pistachio nuts).

• Direct harvesting: used whenever a plant due to its structure can’t

be shaken, requiring a direct application of a mechanical force on the

fruit or its peduncle. In this case picking techniques (or patterns) such

as twisting, pulling, bending, lifting or a combination of them, are cho-

sen to effectively detach fruits from the stem (e.g. strawberries, apples,

tomatoes).

• Direct harvesting with an actuation force on the peduncle: ap-

plied when a cutting tool is required to properly detach the fruit because

of its hard peduncle connection to the plant (e.g. oranges, cucumbers,

peppers).

In figure 2.10 a classification of the most commonly used harvesting methods

as presented in [47] is shown.

Figure 2.10: Classification of automatic harvesting methods, according to [47].
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Depending on the crop, more than one harvesting technique could be used

and several factors such as size, shape, fragility of the tree, maturity stage

of the fruits, the will to risk damaging fruit or plant, financial profitability,

determine the choice of the most suitable one.

2.2.2 Harvesting picking patterns

Regarding the second mentioned harvesting method (direct harvesting), fur-

ther considerations can be made. A research branch in robotics focuses on

studying the human movements performed during the harvesting of crops, with

the objective of replicating them using robotic grippers. These movements are

the so called picking patterns, which include bending, lifting, twisting, and

pulling or a combination of them (shown in Figure 4.34).

Figure 2.11: A simplified scheme of basic picking techniques, according to [47].

In literature, several studies have been conducted to understand the most

suitable picking pattern and therefore gripper design, for each fruit such as

tomatoes, apples, kiwis, strawberries. In particular, soft grippers are being
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developed because of the compliance characteristics that allow delicate ma-

nipulation of the fruit, since direct contact is required while harvesting. Also,

direct harvesting with an additional actuation force can be solved using soft

gripper technology and a suitable cutting tool such as saw, hot wire, scissors

or a knife [63].

This Master’s Thesis’ work, mainly due to the dimensions of the manu-

factured sensing device, focuses on the harvesting of small-size fruits such as

strawberries and tomatoes that can be harvested following the second method.

The picking pattern usually includes twisting and pulling once the fruit is

grasped. Instead, many other fruits such as olives, raspberries and blueberries

that would be directly harvested by hand, they’re far easier to harvest with

the first method (e.g. shaking the plant), if automation is involved.

2.2.3 Automation level of agricultural processes

As often happens, tasks that can be easily carried out by humans become very

challenging for robots. In the field of crop harvesting, an experienced farmer

can firmly and rapidly distinguish maturity stage of a crop not only by the

color but also by the size, shape, surface texture, softness and resonance (sound

it creates when tapped). If tasted, the fruit or vegetable can be harvested

considering its aroma, sweetness, sourness, bitterness. Most of this properties

are difficult to be sensed by a robot and this is the reason why most of the

agrobots are only suited for harvesting crops that will be processed before sale.

Also, the farmland environment is typically non-structured, highly dynamic

and full of obstacles. It’s characterized by dumpy and uneven ground that can

only get worse if bad weather presents. A brief review of the currently present

on the market solutions is presented.

According to a recently published (2021) review paper “Advances in Agri-
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culture Robotics: A State-of-the-Art Review and Challenges Ahead” [48], AI,

IoT technologies and computer vision algorithms can be successfully used for

soil and weed management, fruit classification and weed detection in complex

environments. Regarding the land preparation task, the German company

Raussendorf [55] developed in 2014 “Cäsar” (shown in Figure 2.12), a mo-

bile four-wheel drive remote-controlled/temporarly-autonomous robot for soil

fertilization. In order to perform such a task Real-Time Kinematic (RTK)

technology for the Global Navigation Satellite System (GNSS) is used, allow-

ing to improve the robot’s location accuracy up to 3cm. It is designed to

work in conjunction with farmers featuring a collision detection system with a

maximum detection distance of 5m. On the other hand, the Chinese company

DJI [15] developed a flying drone equipped with 8 rotors (AGRAS MG-1P)

to perform agricultural activities such as applying liquid fertilizers, pesticides

and herbicides (shown in Figure 2.12). It has a transporting capacity up to 10

liters over a maximum distance of up to 3 km, ensuring a spraying capacity

of 6 ha/h. To avoid collisions with high voltage wires or high vegetation, an

omnidirectional radar anti-collision system is embedded, allowing to detect ob-

stacles up to 15 meters. This approach can be useful whenever direct contact

with the soil is not required, as it accelerates the process and avoids terrestrial

obstacles and navigation in a rough environment.

Ascending Technologies [5] proposed AscTec Falcon 8 : a remotly con-

trolled multicopter designed for inspection and monitoring, survey and map-

ping applications. It can be used in agriculture for monitoring the amount of

chlorophyll present in the vines, preventing or highlighting any possible dis-

ease. Tevel Aerobotics Technologies [70] proposed a flying autonomous

robot aimed at automating the fruit picking task, selecting the ripe crops and

gently grasping them. Figure 2.13 includes the mentioned flying drones.
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Figure 2.12: On the left Raussendorf autonomous system for agricultural purposes Cäsar;

on the right DJI AGRAS MG-1P Series agriculture drone.

Figure 2.13: On the left AscTec Falcon 8 flying drone; on the right Tevel Aerobotics

automated fruit picker.

Another key task in agriculture is weed control: a type of pest control that

aims at reducing the growth of noxious weeds that compete with crops for

space, nutrients, water and light. Several companies developed autonomous

robots to remove those undesirable weeds: the french company Näıo Technolo-

gies [46] proposed “Oz”, “Dino” and “Ted” for large scale vegetable farms

and wine growers. According to Näıo Technologies, 70 Oz robots were sold in

2018 alone, being 80% of sales to the French internal market, 15% to European

countries and 5% to the rest of the world. The three Näıo Technologies robots

are shown in Figure 2.14.

The french companyVITIROVER Solutions [74] developed a compact,

lightweight mobile robot for weeds removal (shown in Figure 2.15). It’s able
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Figure 2.14: Autonomous robots proposed by Näıo Technologies, from left to right: Oz,

Dino and Ted

to operate under various weather conditions, it is equipped with photovoltaic

panels and allows control and monitoring through a mobile application, putting

into practice the IoT concept. Also, Tertill Corporation [69], based in Mas-

sachusetts, proposed Tertill : a cheap (349.00 USD), light and small wheeled

autonomous robot designed to remove weeds from residential gardens (shown

in Figure 2.15).

Figure 2.15: On the left the completely autonomous mobile robot for precisely controlling

soil grassing proposed by VITIROVER Solutions; on the right Tertill Weeding Robot.

Once crops are mature, the harvesting process takes place. The spanish

company Agrobot [3] proposes Agrobot E-Series: a robot that consists of

(up to) 24 independent cartesian robotic arms able to work together for gently
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harvesting delicate fruits such as strawberries. As can be seen in Figure 2.16,

it has three wheels and its mechanical structure can be adjusted to suit the

crop dimensions.

Figure 2.16: Agrobot E-Series stainless steel and military-grade aluminum robot.

Moreover, the american company Harvest CROO Robotics [28], created

Berry 5 : a robotic picker that exploits AI to determine if a strawberry is

ripe or not, before harvesting (shown in Figure 2.17). It has a picking speed of

8 seconds per fruit, moving through strawberries beds at a speed of 1.6 km/h,

resulting to an equivalent yield of 25 to 30 human harvesters [48]. Like the

Agrobot E-Series, the various mechanisms of the Berry 5 robot are protected

by patents, making its scientific analysis difficult.

Other companies such as Augean Robotics [9] and Harvest Automation

[52] are focusing on robots that can cooperate with humans for carrying and

organizing products with the objective of increasing industrial productivity.

Augean Robotics developed Burro (shown in Figure 2.18): a mobile collab-

orative robot that exploits computer vision, high precision GPS, and AI to

follow people and navigate autonomously while carrying or towing objects.

It has a maximum carrying payload of 226Kg, depending on the terrain and

a maximum towing capacity of 907Kg. Harvest Automation proposed HV-
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Figure 2.17: Harvest CROO Robotics Berry 5 fruit picking robot.

100 (shown in Figure 2.18): a mobile autonomous robot designed to perform

material handling tasks in unstructured, outdoor environments such as those

typically found in commercial growing operations. The robot can safely collab-

orate with workers and require minimal training to operate, with a maximum

payload of 10Kg.

Figure 2.18: On the left Augean Robotics’ Burro self-driving robot; on the right Harvest

Automation’s HV-100 robot.

Interestingly, the review paper [48] shows that among the 62 considered

projects/available products, 80% of them are in the research stage. Also, most

of them consists of four-wheel drive (4WD) mobile robots and almost 70% of
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them do not include computer vision algorithms.

Despite the constant technological advances, many challenges are still to

be overcome such as fruit occlusions, changes in ambient lighting, simplicity

of construction and efficiency.

2.2.4 Open issues in agricultural automation and pro-

posed solutions

According to [48], most agricultural robots are 4WD, but the agricultural

environment is classified as semi-structured and this kind of locomotion is

strongly affected by soil characteristics. Also, a trade-off between quality and

cost of embedded electronic devices (sensors, cameras, IoT components) must

be taken into account.

Wheeled robots not only struggle to move in an agricultural environment

but can also cause undesired soil compaction. As mentioned,UAV devices can

be a valid alternative if the task allows it. Legged robots are also proposed

by [48] requiring less contact with the ground while moving and being able to

adjust their posture depending on terrain’s slope. Legged robots such as the

ones shown in Figure 2.19 are relatively light, small, autonomous and have

locomotion patterns that adapt to the environment. One drawback is that

their small feet imply a small contact area that creates a considerable amount

of pressure on the foot placement region. So, to prevent robots’ feet from

penetrating soft soils and trapping themselves, they require a customized feet

design.

Also, embedded sensors can have a significant impact on the final prod-

uct’s cost. An idea can be to estimate variables instead of measuring them

through a smart design, like suggested by the recent soft gripping and tactile

sensing publications (discussed in Subsection 2.3.2). If budget allows it, by
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Figure 2.19: On the left ANYmal proposed by ANYbotics; on the right Unitree Go1 pro-

posed by Unitree Robotics.

investing in sensors with a high Ingress Protection (IP), meaning they can

operate with high temperature and humidity ranges, at a small price incre-

ment, the robotic system can benefit in terms of lifetime. Also, computer

vision and machine learning algorithms can furthermore improve the efficiency

of automated tasks such as diseases’ identification, detection of weeds, selec-

tive application of pesticides, location of crops, classification of ripeness and

yield estimation. However, those algorithms need improvements in terms of

robustness making them independent of weather, temperature, humidity and

lighting changes. The use of AI algorithms, such as MLP (MultiLayer Percep-

tron), CNN (Convolutional Neural Network), R-CNN (Region-based CNN),

and SVM (Support-Vector Machines) proved to be adaptable to rapid varia-

tion in natural lighting, changing seasons and crop growing [48].
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2.3 Open issues in soft robotics

2.3.1 Soft grippers’ limitations and required improve-

ments

As seen, soft grippers have lots of advantages but still need some improve-

ments. A common complain is that soft robots and grippers require a time-

consuming multi-step fabrication process that involves mold making,

casting, curing and support removal [7]. As can be noticed by the previously

mentioned state-of-the-art solutions, the manufacturing of most soft grippers

is very “handmade” and still far to be optimized for production. Therefore, re-

peatability can be hard to achieve, even though processes based on 3D printing

and lost wax manufacturing can be valid options for standardizing the manu-

facturing.

Also, soft end-effectors are not easy to model often requiring technical

expertise to account for the continuous deformations given by soft materi-

als. Although their design, placement and testing is not trivial, many re-

searches propose easier to develop end-effectors exploiting 3D printing tech-

nology [7, 47, 63]. As an example, at Carnegie Mellon University, Pennsylva-

nia, some researchers proposed a fully printable low-cost dexterous soft ma-

nipulator that was designed through a framework they developed [7]. They

were able to use the classical rigid-linked Unified Robot Description Format

(URDF), generally not capable of describing continuous deformations of soft

materials, exploiting quasi-rigid approximations. This way the end-effector’s

behaviour can be quickly evaluated in simulation. Depending on the type of

gripping method there are advantages but also limitations: an apple can be

firmly grasped while a strawberry would need a more gentle approach. Some

grippers are easier to maintain and clean, others are only able to grip smooth
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and dry surfaces, while others have a limited adaptive grasping. Features like

modularity, ease of repair and the ability to handle food and multiple crops

are desired for agricultural applications.

Another problem that is typically not addressed by researches is the energy

source system of the soft grippers, that should be tailored to the agricul-

tural unstructured environment. In fact, the proposed electrical, pneumatic or

chemical energy sources are typically only suitable for a laboratory or a very

structured industrial context.

In general, challenges for soft grippers include miniaturization, robustness,

speed, integration of sensing, and control. Improved materials (elastomers,

phase change materials) and processing methods play a large role in future

improvements [63]. Finally, no matter how much the technology is advanced

and reliable, the transition of soft grippers from the research stage to the

industrial context needs to be economically competitive with respect to older

methodologies and semi-automatic or manual approaches. This is a not so

trivial point to address, because without political manoeuvres to incentive

technology innovation, it’s hard to justify huge investments for most of the

small-medium sized enterprises.

2.3.2 Case study-related state-of-the-art

This Subsection is dedicated to a roundup of the main papers that were taken

as inspiration for this Master’s Thesis. In the current state-of-the-art there’s

a lack of information about spherical and hemispherical soft tactile sensors

and grippers, so the few available researches on this topic are considered to

be worth mentioning. The following case study-related works will be useful to

better understand the next chapter.

One of the papers that inspired this work is “Rapid manufacturing of
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color-based hemispherical soft tactile fingertips”, published in 2022

[58]. In this paper the authors present a 3D printed tactile sensor called

ChromaTouch that exploits hue, centroid and apparent size of the markers to

estimate normal and lateral forces. The device, shown in Figure 2.20 is made

with a Stratasys J735 multi-material additive manufacturing system that al-

lows the precise alignment of up to 400 markers on a 21mm radius hemisphere.

The sensing principle is based on the relative displacement between differently

colored markers that lie on two separate layers. In particular, the subtractive

color mixing encodes the normal deformation of the membrane, and the lateral

deformation is found by centroid detection. This approach stands out because

Figure 2.20: On the left the 3D printed ChromaTouch tactile sensor and the transduced

forces into marker appearance changes; on the right a render of the fingertip assembly.

most of the existing marker-based solutions fail to directly encode the distance

between markers and monocular camera, forcing the normal deformation to be

estimated from the lateral displacement of the markers. In this case, the Chro-

maTouch sensor encodes normal deformation in the hue-value of the markers.

Also, using subtractive color mixing (the color of the translucent markers on

the inner layer is mixed with the color of the opaque markers behind them)

allows a higher sensing resolution with respect to older proposals such as the

GelForce sensor. However, the main objective of this work is to perform accu-
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rate curvature estimations when the sensor is pressing against a positively or

negatively curved object but contacting forces and torques are not estimated.

Another research work developed at the University of Madrid entitled “A

universal gripper using optical sensing to acquire tactile informa-

tion and membrane deformation” [57], proposed a granular-jamming

based gripper with semi-transparent filling that allows to detect the mem-

brane’s deformation and the object being grasped. The prototype, shown in

Figure 2.21, is able to grasp cylindrical and rectangular objects (10 to 70 mm

length) while tracking the gripper’s deformation so that object classification

through the reconstructed pointcloud could be performed. Also, grasping suc-

cess is detected estimating shear forces. The fabrication process consists in

3D printing the molds that are later filled with silicone or epoxy resin to re-

spectively create the soft gripper’s membrane and bulkhead. Also, a thickness

of 1mm and a Shore Hardness A-20 were chosen, while the embedded circular

markers have a diameter of 6mm and a thickness of 1.5mm. Even though

the sizing and manufacturing of this prototype are different from ours, a very

similar marker tracking approach was used and the suggested 3D position es-

timation algorithm was implemented but did not achieve acceptable results.

Figure 2.21: On the left the rendered structure of the Universal Gripper; on the right the

manufactured prototype.
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The paper “Soft-bubble: A highly compliant dense geometry tac-

tile sensor for robot manipulation” [4] proposes a dense geometry sensor

and end-effector for tactile-object classification, pose estimation and tracking

(shown in Figure 2.22). It measures deformation of a thin, flexible air-filled

membrane using a depth camera. The sensed features are then exploited to

perform object shape and texture classification (using a Deep Neural network),

object sorting, object pose estimation and tracking. As shown by the follow-

ing scheme, the dimensions of the proposed device allow the use of a Time

Of Flight depth camera (PMD pico flexx) and the design follows its minimum

sensing distance of 100mm. As mentioned by the authors, this choice allows

avoiding non-trivial and robust algorithms for 3D shape reconstruction (e.g.

structured lighting, photometric stereo algorithms). To our knowledge, a simi-

lar approach could not be adopted due to the currently available on the marker

depth sensors’ limitations (size and sensing range), while keeping a compact

design.

Figure 2.22: On the left the dimensioned (mm units) sensor assembly; on the right the

soft-bubble mounted on a KUKA iiwa robot.

Similarly to the paper which has just been discussed, in “Soft-bubble



Chapter 2 Overview of soft robotics in agriculture 36

grippers for robust and perceptive manipulation” [40], a soft-bubble

gripper system is presented (shown in Figure 2.23). In this work the main

contributions to this technology are the design improvements with a smaller

parallel gripper form factor, the introduction of high-density markers on the

internal bubble surface, used for estimating shear forces, a proximity pose

estimation framework and integrated tactile classification. As in the previous

work, a ToF camera is used to sense depth but in this case a prototype camera

from PMD technologies with a working range of 4-11cm was employed (and

placed at an angle to reduce the overall gripper width). Also, markers were

added not to infer depth but to estimate slippage and grasp quality from

shear-induced displacements.

Figure 2.23: On the left the soft-bubble parallel gripper that estimates in-hand pose and

tracks shear-induced displacements; on the right the dimensioned scheme where the ToF

depth sensor is depicted in blue.

In “GelSight Fin Ray: Incorporating Tactile Sensing into a Soft

Compliant Robotic Gripper” [43] a soft gripper with two sensorized fingers

for retrieving tactile information is proposed. The Fin Ray design has the

advantage of not requiring actuation for securely grasping objects unlike many

soft and rigid grippers. Like mentioned by other studies, external ambient
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lighting can interfere with a vision-based system: in this case a dark cloth

was applied on the sensing device, obstructing outside lighting. As shown in

Figure 2.24, the proposed Fin Ray finger is equipped with markers for slip and

twist detection, it can measure the orientation of the in-contact object and

through an RGB illumination and pre-collected reference images can perform

3D reconstruction.

Figure 2.24: The GelSight Fin Ray gripper.

Regarding the force estimation problem, in “HiVTac: A High-Speed

Vision-Based Tactile Sensor for Precise and Real-Time Force Re-

construction with Fewer Markers” [53] a prototype for force reconstruc-

tion is proposed. The developed algorithm allows real-time estimation of the

direction and intensity of the external force. The HiVTac tactile sensor shown

in Figure 2.25 is made of a square sheet of PDMS (polydimethylsiloxane) with

dimensions of 40mm × 40mm. It has 4 markers that are tracked through a

wide-angle camera. The main problem when re-adapting the obtained results

on the case-study are the strong geometrical assumptions that are made thanks

to a planar design, that are not suited for a hemispherical dome.

In “FingerVision for Tactile Behaviors, Manipulation, and Hap-

tic Feedback Teleoperation” [78] and “Implementing Tactile Behav-
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Figure 2.25: The HiVTac tactile sensor prototype.

iors Using FingerVision” [77] by Yamaguchi, the same force estimation

approach is used. Also in these papers, the vision-based tactile sensor (shown

in Figure 2.26) is almost planar, making it different from our design. Nonethe-

less, the same marker tracking and force estimation approach has been imple-

mented and tested to see if a simple linearization would be suitable for small

deformations at least. In particular, tangential forces are estimated consider-

ing the horizontal displacements of the markers while normal forces, due to

the unstable marker’s width reading of the detection algorithm, is estimated

through the norm of the markers’ position change. The noisy radius read-

ing given by the BlobDetection algorithm is also confirmed by our work; the

accuracy of this method to a hemispherical surface will be later discussed.

Figure 2.26: Design of the FingerVision and its prototype installed on the Baxter gripper.
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In “Visiflex: A Low-Cost Compliant Tactile Fingertip for Force,

Torque, and Contact Sensing” [18] a cheap compliant tactile fingertip is

proposed. The sensor, shown in Figure 2.27, is capable of contact localization

and force/torque estimation. According to the paper, tests indicate that typi-

cal errors in contact location detection are less than 1mm and typical errors in

force sensing are less than 0.3N. At a first glance, the design of the Visiflex is

very similar to ours, even though different approaches for force and application

point estimation are used. In this work the american researchers used a dome-

shaped acrylic waveguide covered by a silicone cap. Eight LEDs act as fiducial

markers and the light injected into the waveguide is totally internally reflected

except where the cap contacts the waveguide. This behaviour is exploited to

easily sense either single or multi-contact with the external environment, as

shown in Figure 2.28. Another difference in the design with respect to ours

is due to a 6 degrees of freedom (DoF) fingertip that is accomplished using a

6-DoF flexure system. Wrench sensing is performed using several techniques

such as stiffness matrix estimation, linear approximation and nonlinear ap-

proximation starting from the experimental data (based on Neural Networks).

Figure 2.27: A rendering of the Visiflex [18] tactile sensor and its exploded view.
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Figure 2.28: The Visiflex sensor contacted in multiple points; red LEDs represent are the

fiducial markers, while green LEDs are the contact points that can be seen by the camera,

because of the waveguide.

“The TacTip Family: Soft Optical Tactile Sensors with 3D-

Printed Biomimetic Morphologies” [75] is a slightly older paper (pub-

lished in 2018) that compares several proposed devices with the same biomimetic

design principle. In particular, they all exploit deformation of the fingertip

sensing the displacement of pins or markers using a camera. Several patterns

are considered and compared, based on the in-hand manipulation and object

exploration capabilities. In Figure 2.29 three iterations of the design are shown.

Figure 2.29: As reported in [75]: Open-TacTip (left): the original version of the sensor

comprises a 3D-printed camera mount and base and a cast silicone skin. Improved TacTip

(center): the redesigned base houses a webcam, and modular tips with 3D-printed rubber

skin. Modular tips (right): separate modular tips with a nodular fingerprint (above) and flat

tip (below).
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In “DenseTact: Optical Tactile Sensor for Dense Shape Recon-

struction” [16] a compact tactile sensor with high-resolution surface deforma-

tion modeling for surface reconstruction of the 3D sensor surface is presented.

In this work force estimation is not addressed and the design doesn’t comprise

fiducial markers. As shown in Figure 2.30, using a 3-colored lighting inside

the dome and an RGB camera, the surface deformation is estimated and the

contacting object’s shape is reconstructed. However, this estimates are highly

dependent on 3D shape calibration process (using 3D printed objects and in-

ferring CAD models) and Deep Neural Network’s accuracy.

Figure 2.30: On the left the DenseTact sensor mounted on the Allegro hand and its 3D

reconstruction results; on the right a visualization of the ray casting algorithm, used to

determine the radial depth from the 3D calibration surface which is then projected into the

image plane.

Similarly to the previously cited paper, in “GelSight: High-Resolution

Robot Tactile Sensors for Estimating Geometry and Force” [79]

3D shape reconstruction is performed using a structured light setup and a

photometric stereo algorithm. In particular, 3 differently colored LEDs are

arranged at different directions and combining the shading from three or more

directions, surface normals on each pixel of the shaded image are estimated

(as shown in Figure 2.31). Afterwards, surface normal is integrated to get

the 3D shape of the surface. Also, force estimation is carried out through
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marker tracking. The proposed sensor has a planar geometry, so the mentioned

approaches were not easily applicable to our case study.

Figure 2.31: As reported in [79]: (a) basic principle of the Gelsight design that consists

of a sensing elastomer piece with the opaque reflective membrane on top, supporting plate,

LEDs and camera to capture the shaded images with different lightings; (b) picture of the

sensor; (c) arrangement of the LEDs and camera when viewing from the top.





Chapter 3

The design of the prototype

In this chapter the specific case study is presented, analyzing step by step the

methodologies used to manufacture the prototype. Also, the experimental setups

and the main Computer Vision algorithms are described in detail.

3.1 Specifications and goals

As discussed in Chapter 2, there are several reasons why soft robotics is draw-

ing attention of companies and researchers. Several recently published papers

focus their attention on tactile sensing, that can provide information about

the contact such as friction, slippage, surface features (curvature, texture),

applied reaction forces and torques. Moreover, it can be a valid option for de-

scribing the object’s shape, orientation, rigidity, in situations where vision is

out of reach. As mentioned in [58] most of the research on this topic has been

focusing on soft but flat tactile sensors. On the other hand, extending this

technologies to freeform or hemispherical surfaces is not trivial. In order to

sense the mechanical deformation the common strategy is to apply a pattern

of markers inside the fingertip and track its motion using an RGB or RGBD

43
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camera. This way, there’s no need for direct wiring to the soft material, guar-

anteeing higher compliance than embedding capacitive or resistive materials.

Based on the chosen pattern and marker density, the sensing resolution can

be fairly high. As discussed in Chapter 2, since the fingertip design has to

be compact, there are not available depth cameras (RGBD nor ToF) on the

market that are able to precisely sense depth, requiring a minimum distance of

around 10cm. So, if a monocular camera is used some other techniques have to

be exploited to perform depth estimation. In [58] 2 layers of differently colored

markers are exploited; in [57] they rely on camera calibration and the sensed

markers’ dimensions; in [43], [16] and [79] deep neural network approaches are

used to calibrate the sensor and perform 3D reconstruction.

In our work we focused on the development of a cheap, 3D printed,

marker-based hemispherical soft gripper capable of sensing forces when

in contact with the external environment. Moreover, the 3D shape estimation

approach proposed in [57] has been explored.

The final goals of our work are to:

• design and manufacture a soft tactile sensor with a suited pattern of

fiducial markers to be tracked;

• calibrate the sensing device in order to perform online estimation of both

shear and normal forces;

• design a structure that can hold the sensing device in place and mount it

on the “Franka Emika Panda” [23] robot’s end-effector (shown in Figure

3.1);

• attempt a simple harvesting task exploiting the developed device within a

force control loop on the gripper and an external depth camera mounted

on the robotic arm.
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Figure 3.1: The Franka Emika Panda robotic arm equipped with the Franka Hand 2-fingers

gripper.

3.2 The manufacturing process

3.2.1 Prototyping and manufacturing the hemispherical

dome

First of all, we focused on the manufacturing of the tactile sensor and the

pattern selection. Prioritizing ease of manufacturing and reproducibility, we

decided to avoid as much as possible multi-material additive manufacturing

and molding, focusing on 3D printing. Our hemispherical sensing device was

3D printed using the Formlabs Form 2 stereolithography (SLA) 3D printer

[21] shown in Figure 3.2. It costs around 3000$ and it’s characterized by

a layer thickness or axis resolution of respectively 25, 50 and 100 microns.

The compatible materials are also provided by Formlabs [22] and they range

from 150$/l to 400$/l depending on mechanical properties such as stiffness,

elasticity, thermal resistence and achievable resolution (up to 0.005mm). To

3D print the hemispherical dome we used the Elastic 50A Resin, a polymer

resin that supports a maximum resolution of 100 microns and 50A of Shore

Hardness. The required printing time depends on the geometry and height
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of the model; in our case it was around 4h at a 0.10mm resolution for the

single dome, while 5h at a 0.10 resolution for two domes. SLA resins are

photocurable through light that lies in the ultraviolet spectrum.

Figure 3.2: From left to right: the Formlabs Form 2 stereolithography 3D printer; the

Elastic 50A Resin; a 3D printed sample as shown on the website [22].

After the 3D printing process, the elastomer looks like in Figure 3.3, so

all the unnecessary material has to be properly removed to make the surface

smooth. After 3D printing, the models have to be cleaned either with IPA

(Isopropyl Alcohol), with a proper washing machine or by hand, like in our

case, due to the fragility of the material. In particular the 3D printed domes

need to be dipped in IPA for about 10 minutes; then it has to be gently shaken

while inside the washing tub and left to soak for another 10 minutes. This

process allows to remove all the resin residue from the polymerized structure,

due to the fact that the printer continuously deposits resin on the model and

the laser beam causes its polymerization just above the printing plane (the laser

loses power after the 0.10mm length). The cleaning process is very important

to avoid that all the residues on the surface polymerize during the next step.

Afterwards, the UV curing process takes place inside a special ultravi-

olet oven for about 20 minutes at 60◦. Without entering into too much detail,

curing is a chemical process that causes the toughening or hardening of a poly-
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Figure 3.3: From left to right: the just printed dome; the washed dome; how the washed

dome presents on the inside.

mer material by cross-linking of polymer chains and in our case it was induced

by heat. The amount of required curing time is computed considering the goal

Shore Hardness of the final material that is about 50A. To better understand

the meaning of this value, Figure 3.4 shows a Shore Hardness scale of general

purpose items. Shore Hardness is in fact a measurement unit that indicates

the resistance of a material to indentation. As shown in Figure 3.4, there are

different scales, depending on the application field and material type, that can

overlap each other.

Figure 3.4: Shore Hardness scale of general purpose items.

Figure 3.5 shows a summary of the most common materials’ properties and

curing times, according to [33], used in soft robotics.

Figure 3.6 shows how the polymer dome presents before and after the curing

process.
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Figure 3.5: Chart of the most common soft materials’ properties and curing times, accord-

ing to [33].

Figure 3.6: On the left the hemispherical dome before being cured; on the right the hemi-

spherical dome after being cured.
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Once the material is cured, it becomes semi-transparent allowing external

light to partially pass through. This behaviour, that initially was thought to

be an added value is actually something to deal with in order to achieve an

accurate tracking algorithm. In fact, the shadows generated by the in-contact

object tend to interfere with the markers’ detection and tracking algorithms.

To avoid this problem, a temporary light-colored cloth was placed over the

dome during testing and calibration, while a thin layer of latex was used as a

cover on the final sensing device. Also, it’s worth mentioning that the higher

the curing time the greater the opacity but also the material’s stiffness.

The prototyping process included multiple iterations of the dome design,

in particular:

• initially, the markers’ diameter was 0.9mm (inside view of the dome

shown in Figure 3.7) and they were spaced by 1.5mm intervals. To im-

prove markers’ detection and tracking they were increased to a diameter

of 2mm and a spacing of 2mm;

• four different patterns were printed and evaluated based on their sen-

sitivity to applied forces and robustness during markers’ tracking. As

mentioned by state-of-the-art related papers, a tradeoff between sensing

resolution and signal-to-noise ratio must be found. In our case, we de-

cided to adopt the “double cross” design shown in Figure 3.8. We led

to this decision due to the markers’ detection and tracking reliability;

also, the pattern was designed in such a way that diagonal crosses can

be distinguished from orthogonal crosses by the number of markers and

have a slightly different spacing. The total number of markers on the

chosen design is 29 and they were filled with black resin to maximize the

contrast (this operation could be easily integrated during 3D printing, if

the printer allows it).



Chapter 3 The design of the prototype 50

Figure 3.7: On the left the initial “double cross” design consisting of 0.9mm diameter

markers with a spacing of 1.5mm; on the right the superimposed detected blobs which are

clearly noisy.

Figure 3.8: On the left the four designed patterns; on the right the chosen “double cross”

pattern.

3.2.2 Design and manufacturing of the case

The case was 3D printed using a cheap FDM (Fuse Deposition Modelling)

printer and it’s made of PLA (Polylactic Acid). Initially, it was thought as a

4 parts design to decouple as much as possible the different layers, as shown

in Figure 3.9. In fact, starting from top to bottom:

• a square piece constrains the hemispherical dome at its base;
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• a thinner plate with a circular indentation holds the Adafruit NeoPixel

Ring (12 LED) [1];

• a “box-like” shaped piece holds the 5MP fish-eye RGB camera for Rasp-

berry Pi [20];

• the base completes the design and includes several holes for positioning

screws and cable management.

Figure 3.9: On the left a photograph of an exploded view of the initial prototype; on the

right a render of the prototype.

After several iterations, mainly due to a bad centering of the camera that

led to poor force estimation results and a non-symmetric image, the design

was further improved. Having a modular design allows to re-think and print

a single part instead of the whole prototype, making the overall process faster

and minimizing products’ waste. In fact the final design consists in 4 flat

elements that are fast to print (around 40 minutes each) and the main through

hole box that requires 2h, for a total of about 5h at 0.18mm resolution for the
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whole case. Considering the amount of required material, the production cost

of the case is around 4e.

Figure 3.10 shows a render of the final design that was mounted on the

Franka Emika Panda’s gripper.

Figure 3.10: Multiple rendered views of proposed 3D printed modular design.

3.3 Experimental setups

In this section the experimental setups are described and divided into three

categories: testing setup used during software implementation; temporary setup

for data acquisition during sensor’s calibration; definitive setup mounted on the

robot.

3.3.1 Testing setup used during software implementa-

tion

The most frequently used setup during our work is the one shown in Figures

3.11 and 3.12. It includes the following hardware components:

• Raspberry Pi 3 Model B [54], its power supply and USB WiFi Adapter;
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• Arduino Uno [68];

• 3D printed hemispherical dome mounted on the 3D printed case;

• Adafruit LED NeoPixel Ring 12 RGB [1] (inside the case);

• IR 1.7mm focal length 5MP resolution 175◦ field of view fish-eye camera

(Chip OV5647) for Raspberry Pi [20] (inside the case);

• connection cables for the LED Ring and the camera;

• power supply connector and splitter for charging the Arduino Uno board

and the LED Ring;

Figure 3.11: Overall view of the testing experimental setup.

On the Raspberry Pi 3 board, “Raspberry Pi OS” (previously called Rasp-

bian) was installed. It acts like a server establishing a connection with the

main computer and sends to it the real-time images collected by the cam-

era. The Arduino Uno board was used to easily control the Adafruit LED
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NeoPixel Ring with the dedicated library [17]. The main computer connects

to the Raspberry server as a client (they must be connected to the same Local

Area Network) and processes the received raw frames.

Figure 3.12: Closer views of the experimental setup.

3.3.2 Temporary setup for data acquisition during sen-

sor’s calibration

Once the markers were properly detected and tracked by the Computer Vision

algorithms (that will be discussed in Section 3.4), a temporary setup for data

acquisition was created. In addition to all the mentioned components of the

“testing setup”, an ATI Nano17-E force-torque sensor [6] and a 3-axis DoF

Cartesian robot were exploited. Figure 3.13 shows a 3-axis Cartesian robot

similar to the one we used and the ATI Nano17-E sensor. The “testing setup”

was placed on a horizontal surface while the 3-axis robot holding the ATI

Nano sensor was pressed against the hemispherical dome. In particular, we

measured normal forces applied to the same point that was, approximately,

the dome’s center. Data acquisition and processing will be discussed more in

Subsection 3.4.3.



Chapter 3 The design of the prototype 55

Figure 3.13: On the left an example of Cartesian robot; on the right the ATI Nano Series

6-axis force/torque sensor.

3.3.3 Definitive setup mounted on the robot

As mentioned before, the Franka Emika Panda robotic arm was used. Accord-

ing to the datasheet [24], it has a maximum payload of 3kg, 855mm of reach

and 7 degrees of freedom (Figure 3.14 shows the robot’s workspace from two

different points of view).

Figure 3.14: On the left a side view of the arm’s workspace, on the right a top view of the

arm’s workspace.

Also, it is equipped with a hand parallel gripper with exchangeable fingers

(shown in Figure 3.15), that we unscrewed to install the developed sensing
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device. Regarding the applicable force, it ensures a continuous force of 70N

and a maximum force of 140N. The robot was programmed with C++ and

Python languages using ROS (Robot Operating System).

Figure 3.15: Original Franka Emika Hand gripper.

As shown in Figure 3.16, the setup that was mounted on the robot arm in

order to perform a grasping task includes:

• the Franka Emika Hand gripper with 2 sensing devices (of which only one

was used for real-time force sensing, assuming that the force is equally

distributed among the two);

• an Intel RealSense D435i [32] depth camera;

• a Raspberry Pi 3 board;

• a series of 3D printed suitable holders for each component.

Figure 3.16 shows two renders of the Panda’s gripper with the custom

sensing device that replaced the original fingers and the Real Sense depth

camera. Moreover, Figure 3.17 shows the 3D printed design mounted on the

real robot.
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Figure 3.16: Renders of the definitive setup mounted on the Franka Emika Panda robot.

Figure 3.17: Photographs showing the Franka Emika Panda robot with the custom gripper

installed on the Franka Hand.

As can be noticed looking at Figure 3.16, the Arduino Uno was removed

to improve the design, by simply installing the dedicated library [26] on Rasp-

berry Pi to manage the Adafruit LED Ring. The Intel RealSense D435i shown

in Figure 3.18 is a depth camera that was exploited to autonomously perform

a grasping/picking task. In fact, RGBD cameras allow to retrieve not only a

color image but also 3D coordinates (with respect to its own reference frame)

associated to every pixel in the image. Future developments may further take

advantage of it offering: collision avoidance and consequent trajectory plan-
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ning, safer human-robot interaction, more effective picking pattern selection,

more robust and reliable object detection.

Figure 3.18: The Intel RealSense D435i RGBD camera.

3.4 Implemented software algorithms and ap-

proaches

This section explores the main implemented algorithms and pipelines, ranging

from marker detection to online force estimation.

3.4.1 Marker detection and tracking

The individual markers inside the dome are detected using OpenCV Blob

Detection algorithm. The input image that is sent from the Raspberry Pi

board to the main laptop is then converted to grayscale used as input of the

OpenCV SimpleBlobDetector. The detector’s parameters are fine-tuned for our

specific case; in particular, blobs are filtered by area and a maximum threshold

is applied. According to “LearnOpenCV”’s guide [41], the main steps of the

SimpleBlobDetector are:
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• Thresholding: the source image is converted to several binary im-

ages by thresholding it with thresholds starting at minThreshold. These

thresholds are incremented by thresholdStep until maxThreshold ;

• Grouping: in each binary image, connected white pixels are grouped

and they’re called binary blobs.

• Merging: the binary blobs’ centers in the binary images are computed,

and blobs located closer than minDistBetweenBlobs are merged;

• Center & Radius Calculation: the centers and radii of the newly

merged blobs are computed and returned.

As shown in Figure 3.19, further thresholding options can be set as parameters

of the SimpleBlobDetector. In our application, markers can deform to ellipses

but still need to be tracked, so filtering was applied by area and a manual filter

was introduced to consider only markers detected within a pre-defined radius

from the frame’s center (assuming the dome to be centered with respect to the

camera).

Figure 3.19: SimpleBlobDetector’s thresholding options.
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The Listing 3.1 shows how the SimpleBlobDetector was created and ini-

tialized specifically to be reliable during marker detection with the 29 markers

“double cross” design.

1 import cv2

2 def set_parameters ():

3 # Initialize parameters of the SimpleBlobDetector

4 params = cv2.SimpleBlobDetector_Params ()

5

6 # Filter by Area

7 params.filterByArea = True

8 params.minArea = 20 # ideal for "double cross" pattern

9 params.maxArea = 200 # ideal for "double cross" pattern

10

11 # Maximum threshold

12 params.maxThreshold = 125

13

14 # Create a SimpleBlobDetector with the chosen parameters

15 detector = cv2.SimpleBlobDetector_create(params)

16

17 return detector

Listing 3.1: Python snippet of the SimpleBlobDetector’s initialization

Also, in Figure 3.20 both the raw frames (before and after deformation)

sensed by the fish-eye camera and the superimposed detected markers are

shown. The green circle represents the manually defined area of interest, so

if a blob is detected outside of it, it is ignored (sometimes the borders of the

image tend to create problems), while the green lines mark the center of the

camera image, allowing a better manual alignment. The Blob Detection algo-

rithm is fairly robust even when high deformations are involved; on the other

hand it considers blobs as circles and not ellipses. This aspect is highlighted

and properly managed by [57] where the diameter of the circular marker is com-
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puted as twice the semi-major axis of the ellipse shown in the camera image.

The semi-major and semi-minor axes are computed using the ellipse fitting

algorithm proposed by Fitzgibbon et al., also integrated in the cv2.fitEllipse()

function. In our work this aspect was investigated, even though our markers’

size is about one order of magnitude smaller than the Universal Gripper’s,

resulting in a less pronounced shape transition from circle to ellipse.

Figure 3.20: From left to right: the raw frame when no forces are applied; the raw frame

after applying a force; the frame after marker detection.

Looking at Figure 3.21 we can see that after applying a normal force of

around 4N, the markers’ shape tend to be slightly elliptic depending on the

application point and marker location, but the standard Blob Detection algo-

rithm returns circles that approximate their shape. The central image shows

the Blob Detection’s output, highlighting in white the circle and the center

with black crosses. The image on the right shows the fitted ellipses that can’t

be obtained directly from the Simple Blob Detector (even though one could

exploit circularity and inertia filters to retrieve the amount of deformation). In

fact, a simple algorithm was developed and can be summarized in the following

steps:

• convert the input image to gray-scale (cv2.cvtColor() function);

• blur the gray-scale image with a 3× 3 filter (cv2.blur() function);

• detect edges using the Canny algorithm (cv2.Canny() function);
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• find contours on a binary image (cv2.findContours(canny output,

cv2.RETR EXTERNAL, cv2.CHAIN APPROX SIMPLE) function);

• for each contour (that represents the marker’s border) if it consists of

at least 5 points, fit an ellipse using the Fitzgibbon95’s algorithm imple-

mented in the cv2.fitEllipse() function;

• return the ellipses’ center and major-axis.

Figure 3.21: Left: the raw frame when a normal displacement of 10mm is caused by the

external force. Center: the frame after marker detection, fitting ellipses. Right: the frame

after marker detection fitting circles.

Figure 3.22 shows the horizontal, vertical and radius displacements of the

detected circular markers in pixel units, while Figure 3.23 refers to the de-

tected elliptic markers. This results come from one of the measured samples

during the data acquisition phase, in particular the centered normal force from

rest position to a maximum Z-deformation of around 10mm, corresponding to

about 4N of vertical force.

As can be seen by the two graphs, the sensed displacements are pretty

similar but the radii measurements become even more noisy when considering

markers as ellipses. Considering the not so straightforward ellipse fitting al-

gorithm that includes several thresholding steps, the rest of the work uses the

standard Blob Detection’s output that is accurate enough for our case study.
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Figure 3.22: Circular markers’ displacements (horizontal, vertical and radius) in pixel

units. Each of the 29 markers is represented by a different hue.

Figure 3.23: Elliptic markers’ displacements (horizontal, vertical and radius) in pixel units.
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The main reason why this method was implemented is because the 3D recon-

struction formulas returned sometimes noisy and non-realistic results; unfor-

tunately considering ellipses’ centers and widths didn’t improve the outcomes

by much.

Once the markers are properly detected, tracking comes into play. The

tracking approach is fairly simple: after an initialization step that is passed

if all the 29 markers are detected, for every received frame, marker detection

is applied and the new coordinates are associated to the closer marker of the

previous frame. Using as a metric to sort markers the Euclidean distance, we

found the approach robust enough: the frame rate is about 20fps, allowing

it to correctly perform tracking. In order to make the algorithm a bit more

reliable during the offline dataset creation, a Boolean interpolation matrix has

been created. In each row of this matrix there are 29 Boolean instances that

indicate the tracking state (“True” means currently tracking; “False” means

tracking was lost) of each marker corresponding to the considered frame. Once

all the states are collected, the DataFrame data structure (pandas library) is

exploited to perform linear interpolation of the u, v and radius measurements,

when tracking was lost (a code snippet is shown in Listing 3.2).

1 import numpy as np

2 import pandas as pd

3 # [...]

4 # Linear interpolation where interpolation matrix value is True

5 for it , interp_arr in enumerate(interpolation_matrix ):

6 interp_arr = np.array(interp_arr)

7 ind = list(np.where(interp_arr == True )[0])

8 if len(ind) > 0:

9 for marker_id in ind:

10 all_traj_markers[it][ marker_id] = [np.nan ,np.nan ,np.nan]

11
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12 # Interpolation step: if "np.nan", means tracking was lost ,

13 # so interpolate linearly between positions

14 trajs = np.array(all_traj_markers)

15 for marker_id in range(num_markers_gripper ):

16 interp_df = pd.DataFrame(trajs[:,marker_id ,:]). interpolate ()

17 for it , el in enumerate(interp_df.values.tolist ()):

18 all_traj_markers[it][ marker_id] = el

19 # [...]

Listing 3.2: Python snippet of how linear interpolation is performed when tracking is lost.

Figure 3.24 shows a visual representation of the markers being indepen-

dently tracked (subsequent coordinates of the same marker are scattered with

the same color) and sorted (the sorting algorithm will be discussed in Subsec-

tion 3.4.4); while Figure 3.25 shows the effects of the same deformation directly

on the frame sent by Raspberry Pi.

Figure 3.24: Plot of the subsequent markers’ coordinates in pixel units during deformation.
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Figure 3.25: From left to right: the raw frame in rest position; the superimposed arrows

that show the displacement’s direction of each marker (the arrows were lengthened by a factor

of 8 to make them more visible); the raw frame under a force of around 4N.

3.4.2 From pixel to metric units with a monocular setup

We believe that it’s worth mentioning all the tried approaches to estimate the

markers’ 3D coordinates, because at first we wanted to exploit those results for

force estimation. Despite the efforts, in the end we decided to directly train

the force estimation models on the coordinates expressed in pixel units, being

them far more reliable.

As discussed in Subsection 2.3.2, most of the proposed methods to recon-

struct the grasped object’s (or dome’s) 3D shape that don’t imply RGBD

cameras, rely on Neural Networks or on a preliminary training process. In

fact, obtaining depth information with a single camera (monocular setup) is

not a trivial task. In our work we tried to reproduce the results obtained in

[57] using the suggested formulas. In particular 3D marker position estimation

is performed as:

X =
(u− cx)Omm

Opx

(3.1)

Y =
(cy − v)Omm

Opx

(3.2)

Z =

√
(fxOmmIpx)

OpxImm

−X2 (3.3)

where (X, Y, Z) are the 3D estimated coordinate of the marker; (u, v) are
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the coordinates of the marker in pixel units; (cx, cy) are the principal point

coordinates (obtained through camera calibration), usually at the image center;

(fx, fy) are focal lengths in metric units; Omm is the marker’s width in metric

units, while Opx is the marker’s width in pixel units, both corresponding to

the ellipse’s major-axis; Imm is the image sensor width in metric units while

Ipx is the image sensor width in pixel units. Figure 3.26, [57], reports a visual

representation of the markers’ width and the resulting 3D shape estimation.

Figure 3.26: On the left a representation of how circular markers embedded in the mem-

brane are searched as ellipses; on the right the developed viewer tool illustrating the gripper’s

deformation [57].

First of all, we focused on this approach. After applying the standard

Computer Vision calibration process with a 9 × 6 chessboard and the use of

OpenCV, the camera matrix and distortion parameters were computed. After

that, the pixel to meters conversion takes place to retrieve the 3D position

of the 29 markers. In this regard, we tried to exploit both the circular and

elliptic marker detections to compare the results and look for improvements.

From a qualitative point of view, the retrieved 3D coordinates are reasonable

but they don’t measure up to the CAD model.

As can be noticed by looking at Figure 3.27, when the sensor is in its

rest position, some of the central markers are actually lower than the external

ones. To better understand the graphs: in Figure 3.27 and in the left image of

Figure 3.28 the cyan coordinates represent the 3D ground truths obtained from
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the CAD model in rest position; the green and red coordinates were computed

using the Equations (3.1) - (3.3) and they respectively refer to the rest positions

(that should coincide with cyan coordinates) and deformed positions (for which

we don’t have a reliable ground truth). Moreover, Figure 3.28 shows a 3D

mesh representing the deformed dome, that was obtained performing a Boolean

difference between a sphere of the same diameter of the dome and the 3D

triangulated volume from the markers’ coordinates after deformation, using

the pyvista “delaunay 3d()” function.

Figure 3.27: From left to right: top and front views of the obtained 3D coordinates of the

markers detected as circles, using the formulas described in [57].

Also, this method heavily relies on camera calibration, image rectification

and a correct camera placement that ensures the validity of the geometric

assumptions. In fact, with the initial temporary setup, we experimented that

moving and tilting the camera in different directions would drastically change

the obtained 3D coordinates.

Trying to improve the 3D estimation, that could open up the possibility of

performing object in-hand localization, classification and surface estimation,



Chapter 3 The design of the prototype 69

Figure 3.28: Left: side view of the obtained 3D coordinates of the markers detected as

circles, using the formulas described in [57]. Right:3D mesh obtained using the “pyvista”

library.

we tried to exploit the discussed ellipse fitting algorithm. So, each marker

is represented by the (u, v) coordinates that define the ellipse’s center and by

twice the ellipse’s semi-major axis in place of the circle’s radius. As shown in

Figure 3.29, this approach leads to slightly better results. Moreover, Figure

3.30 shows a comparison of the obtained 3D coordinates between fitting circles

and ellipses.

Unlike the previous two, another approach to estimate 3D coordi-

nates that was developed from scratch is presented. It relies on the mea-

sured circles’ radii and on the 3D initial position of the markers extracted

from the CAD model. In fact, despite being fairly noisy, the radius of each

marker is the only “measurement” of depth that can be retrieved. So, the

idea is to estimate the 3D position of each marker through a linear (for X and

Y ) or inverse (for Z) proportionality between the CAD coordinates and the

(∆u,∆v,∆radius) displacements. Listing 3.3 shows the Python code used to
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Figure 3.29: Top and front views of the obtained 3D coordinates of the markers detected

as ellipses, using the formulas described in [57].

Figure 3.30: On the left a front view of the obtained 3D coordinates of the markers detected

as circles, on the right a front view of the obtained 3D coordinates of the markers detected

as ellipses.
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perform the 3D estimation. As clearly stated by the comments, there are some

manually defined normalizing factors that make the estimation reasonable, but

to be automatically computed, 3D ground truths of the deformed dome would

be required. Regarding the “Z reduction” array, the boundaries were set con-

sidering the normal displacement that was acquired during the dataset creation

with a 3-axis robot. So, having recorded a maximum deformation of negative

10mm, we accordingly set the boundaries so that the Z-coordinate estima-

tion would be correct for the central marker, then we assumed that a linearly

distributed normalizing factor could be suitable for the other markers. Also,

the normalizing factors would need to be kept consistent even with less pro-

nounced deformations. On the other hand, the “norm factor u v” normalizing

factor was manually defined so that the X and Y estimations would be rea-

sonable even though (X, Y ) ground truths are missing. Future developments

could retrieve ground truths 3D coordinates simulating force application with

a software such as SOLIDWORKS [67].

1 # Normalize radius displacements between -1 and 1

2 displacements_px_c = final_markers_c - initial_markers_c

3 norm_radius_disp = displacements_px_c [:,2]. copy()

4 norm_radius_disp /= max(abs(norm_radius_disp ))

5

6 # Manually define X,Y,Z reduction factors

7 num_steps = 30

8 Z_reduction = np.linspace(1, 0.6, num_steps)

9 disp_steps = np.linspace (0.1, 1, num_steps)

10 norm_factor_u_v = 40

11

12 # Compute the final 3D markers ’ coordinates

13 final_markers_3d = []

14 for m_id ,(rad_disp ,mark) in enumerate(zip(norm_radius_disp ,

15 final_markers_c )):
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16 u,v,radius = mark

17 X,Y,Z = markers_XYZ[m_id ,:] # get ground truths from CAD

18 u_disp ,v_disp = displacements_px_c[m_id ,0:2]/ norm_factor_u_v

19 for k, factor in enumerate(disp_steps ):

20 if rad_disp < 0.3 and [X,Y,Z] not in final_markers_3d:

21 final_markers_3d.append ([X*(1+ u_disp),Y*(1+ v_disp),Z])

22 break

23 elif 0.3 <= rad_disp <= factor:

24 final_markers_3d.append ([X*(1+ u_disp),Y*(1+ v_disp),

25 Z*( Z_reduction[k])])

26 break

Listing 3.3: Python snippet of the proposed 3D markers’ positions estimation

Figure 3.32 shows the obtained 3D coordinates with the proposed method,

while Figure 3.31 shows a heatmap representing radius displacement (from

black to yellow) superimposed on the deformed frame, on which is based the Z-

coordinate estimation. Finally, Figure 3.33 presents a 3D visual representation

of the deformed dome obtained through the pyvista library.

Figure 3.31: On the left a radius displacement heatmap superimposed on the deformed

frame; on the right the before (coinciding with the CAD ground truths) and after deformation

meshes obtained triangulating the 3D markers’ coordinates.
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Figure 3.32: Top and front views of the 3D markers’ coordinates obtained with the pro-

posed method.

Figure 3.33: From left to right: a top and a bottom view of the 3D mesh obtained through

boolean difference between dome and triangulated markers’ coordinates; a side view of the

3D mesh obtained through boolean difference between rest position and deformed position

triangulated markers’ coordinates.
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3.4.3 Raw data acquisition for sensor calibration

To properly calibrate the sensing device, ground truth forces and tracking

data have been acquired. In particular, as mentioned in Subsection 3.3.2 an

ATI force/torque sensor was used to measure ground truth forces while press-

ing against the dome’s surface. To log the force measurements we used ROS

(Robot Operating System), so they were saved inside the so called “rosbags”.

After positioning and centering the robot above the dome and resetting the

sensors’ bias caused by its orientation, we collected force measurements and

raw frames slowly moving down the Z-axis of the robot to generate pressure

on the dome. In this fashion we acquired data from 9 different experiments

ranging from 3mm to 12mm (3,4,5,6,7,8,9,10,12 mm) of vertical displacement,

generating a normal force approximately centered on the central marker. Fig-

ure 3.34 shows the force and torque components measured by the ATI Nano

sensor.

Figure 3.34: Force and torque components measured by the ATI Nano sensor.
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3.4.4 Offline semi-automated dataset creation pipeline

After collecting all the images and force measurements during the data ac-

quisition process, the raw data has to be pre-processed and properly stored.

In particular, after organizing in a proper folder structure the raw data, a

semi-automated offline pipeline was developed in order to perform the

following tasks:

1. automatic offline detection and tracking of the markers, starting from

the pre-collected images during each trial. The low-pass filtered and

interpolated (if needed) tracking data (timestamp, marker trajectory,

marker displacement) is than written on a .json file;

2. semi-automatic synchronization between ground truth forces and marker

displacements. The synchronized ground truths and displacements are

written into two separate .json files, while the corresponding images are

correctly placed inside each folder.

Starting from the first task, the raw data was stored and organized in the

following manner:
raw data

3mm

out img

* 1frame.png

* 2frame.png

* 3frame.png

*.bag

4mm

out img

..

*.bag

..

Once the code is executed, all the folders contained inside “raw data” are

browsed one by one. If a “.bag” file and the “out img” folder are found,
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the stored frames are read based on the index order, then marker detection

and tracking is performed. After having tracked the 29 markers, they are

linearly interpolated as explained in Subsection 3.4.1 and filtered with a butter

low-pass filter implemented in the scipy.signal library. It’s worth mentioning

that the detected markers are not sorted between different trials, meaning

that “marker 1” of experiment “3mm” could correspond to “marker 5” of

experiment “4mm”.

Next, the second task comes into play. Due to the absence of a unique

triggering signal to synchronize the ATI measurements with the images or

online tracking data during acquisition, a semi-automatic and fast synchro-

nization step was introduced. After the first step, Figure 3.35 pops up and

the user is asked to click on the figure six times. In particular, the user needs

to specify the start and end of the ground truth portion (2 clicks on the first

subplot) and only then the boundaries of the corresponding markers’ displace-

ments (2 clicks on the second subplot). This process has to be done 3 times, in

order to automatically retrieve synchronized pixel displacements and trajec-

tories, force ground truths and raw images. In fact, after six clicks, the three

obtained segments are shown to the user that needs to supervise the results

(this pipeline could be easily automated but we think that this task is crucial

enough to require human supervision). Figures 3.36, 3.37 and 3.38 show how

the first, second an third segments present after synchronization.
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Figure 3.35: Figure showing from top to bottom: the 3 force components’ ground truths,

the u, v and radius displacements of each marker.

Figure 3.36: Plot showing the first segment of the synchronized ground truths and markers’

displacements.
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Figure 3.37: Plot showing the second segment of the synchronized ground truths and mark-

ers’ displacements.

Figure 3.38: Plot showing the third segment of the synchronized ground truths and markers’

displacements.
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Once all the data stored in the “raw data” folder has been synchronized,
the “clean data” folder contains:

clean data

3mm synchronized partial1

synchronized rgb

* click1 frame.png

* click1 +1 frame.png

..

* click2 frame.png

synchronized pixel.json

synchronized rosbag.json

3mm synchronized partial2

synchronized rgb

* click3 frame.png

* click3 +1 frame.png

..

* click4 frame.png

3mm synchronized partial3

synchronized pixel.json

synchronized rosbag.json

synchronized rgb

* click5 frame.png

* click5 +1 frame.png

..

* click6 frame.png

..

To make the mentioned folder representation clear, click1 refers to the index

of the image that corresponds to the associated ground truth and displacements

values. Also, time normalization is performed due to the lack of a common

trigger and ground truths’ downsampling is carried out because the ATI

Nano sensor’s sampling frequency is far greater than the received frames per

second (since the marker tracking process is performed offline, the number

of displacements - or markers’ coordinates - corresponds to the number of

acquired images). Some experiments were conducted to see if introducing a

linear upsampling of the displacements would lead to better results, thanks to
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a higher number of training samples. In some cases this approach seemed to

worsen the force estimates, maybe due to a linearization of highly non linear

data, so it was not adopted to create the final dataset.

Once all the raw data was cleaned and synchronized, the dataset has

been split between 80% train and 20% test both manually and using the

“sklearn.model selection.train test split()” function. Also, in addition to the

mentioned trials, some dynamic tests were manually performed and synchro-

nized to check the models’ robustness and ability to generalize.



Chapter 4

Experimental results

In this Chapter all the utilized force estimation approaches are presented, briefly

explaining the exploited algorithms, ranging from Linear approximation to Ma-

chine Learning and Deep Learning techniques. After that, the achieved results

are compared based on the Mean Squared Error metric.

4.1 Force estimation approaches

Several approaches were exploited and compared to perform force estimation,

ranging from simple linear approximations to Machine Learning and Deep

Learning algorithms. In particular, we used:

• a linear elastic force approximation based on [78];

• a non-linear and more sophisticated variant of [78];

• a properly tuned Linear Regression model implemented by sklearn

[60]

• a properly tunedK-Neighbors Regressor model implemented by sklearn

[59]

81



Chapter 4 Experimental results 82

• a properly tuned Support Vector Regression model implemented by

sklearn [62]

• a Neural Network Sequential model implemented through keras [37]

• aDeep Convolutional Neural Network model implemented through

keras [36]

4.1.1 Machine Learning vs Deep Learning

In this Subsection as brief introduction to the Machine Learning pipeline is

presented. Then, we discuss the main differences between Machine Learning

and Deep Learning approaches, rapidly explaining what a Neural Network is.

• Data preparation : collection, “cleaning” and pre-processing of the

required input data (images or numerical data);

• Feature extraction : retrieving more manageable information that still

describes the raw data and is suitable for modelling;

• Feature selection : reducing the features’ space dimensionality, keeping

only the most relevant features to train the model. Feature selection is

a prior knowledge in Machine Learning approaches;

• Model selection : choosing a statistical model and tuning its hyperpa-

rameters to solve the regression problem. Model selection is also a prior

knowledge in Machine Learning approaches;

• Model training : process that uses the training dataset to build a model

that will be able to classify new samples, belonging to the test set;

• Prediction : model output decision based on its acquired knowledge;
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• Model testing : testing the previously trained model with unseen input

data to check its performance. The aim of model training is building

a general model that can classify new samples, avoiding overfitting the

train set.

The main difference between Machine Learning and Deep Learning ap-

proaches is the prior knowledge. In fact, if Neural Networks are used, not

only feature selection and model selection, but also feature extraction and pre-

diction processes are considerable prior knowledge. Features are constantly

learned during model training, through layers of Convolutional filters, core of

CNN architectures. Another important aspect that we considered when test-

ing the real-time implementation was the required prediction time. In fact,

Machine Learning algorithms tend to be faster to train and evaluate than

Deep Learning architectures. Figure 4.1 schematizes the differences between

Machine Learning and Deep Learning, while Figure 4.2 shows a typical Deep-

CNN structure.

Figure 4.1: The main differences between Machine Learning and Deep Learning and an

example of Deep-CNN [42].
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Figure 4.2: The typical architecture of Deep-CNN [71].

4.1.2 Linear estimation

The first method we focused on was a linear approximation based on the

elastic force formulation, discussed in “Implementing Tactile Behaviors Using

FingerVision” [78] and “FingerVision for Tactile Behaviors, Manipulation,

and Haptic Feedback Teleoperation” [77]. Figure 4.3 extracted from paper [78]

shows the detected markers’ trajectories when the almost planar surface is

deformed.

Figure 4.3: On the left the detected markers’ movement using SimpleBlobDetector; on the

right an example of marker movements when a normal force is applied [78].

Let (dx, dy) be the horizontal displacement of each marker from its initial

position and let (cx, cy, cz) be the constant elastic coefficients, a force estimate
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applied at each marker is given by

[fx, fy, fz] = [cxdx, cydy, cz

√
d2x + d2y]. (4.1)

So, the overall force estimates of the sensing device are defined as average of

the single forces:

[Fx, Fy, Fz] = [
1

29

28∑
i=0

fx,
1

29

28∑
i=0

fy,
1

29

28∑
i=0

fz] (4.2)

This approach assumes that every marker has the same impact on the

force estimates and that there’s a linear relation between horizontal/vertical

displacements and forces. Regarding the normal force estimation, they use

the norm of markers’ position change being it more stable and less affected by

noise than the radius reading of the Blob Detector. As mentioned in Chapter

2, this approximation is really put to the test in our case study, being the

surface hemispherical and not planar like in [78].

In this case the model is fairly simple, being it linear and composed by 3

constant parameters. To retrieve the average stiffness coefficients along the 3

main directions, we used the following approach (a code snippet is shown in

Listing 4.1):

• consider the train dataset’s (Fx, Fy, Fz) ground truths and pixel horizon-

tal/vertical displacements;

• if the ground truths are greater than a threshold, compute the three

stiffness coefficients for each of the 29 markers by inverting Equation 4.1

(avoiding the division-by-zero exception);

• once the previous steps are repeated over all the training samples (among

the several recorded experiments), the final (Cx, Cy, Cz) coefficients are

computed as the median (instead of the mean) of all the collected values.
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1 # [...]

2 # Avoid having high C_hat coeffs. because of

3 # near to zero displacements

4 th_from_zero = 0.1

5 if dx == 0:

6 dx = th_from_zero

7 elif abs(dx) < th_from_zero:

8 dx = np.sign(dx) * th_from_zero

9 if dy == 0:

10 dy = th_from_zero

11 elif abs(dy) < th_from_zero:

12 dy = np.sign(dy) * th_from_zero

13 # [...]

14 # Linear formulas from the paper:

15 # compute coeffs. only if the ground truth is meaningful

16 force_th = 0.1

17 if abs(force_gt_x) > force_th:

18 Cx_hat_final.append( force_gt_x /(dx) )

19 if abs(force_gt_y) > force_th:

20 Cy_hat_final.append( force_gt_y /(dy) )

21 if abs(force_gt_z) > force_th:

22 Cz_hat_final.append( force_gt_z /(np.sqrt(dx**2 + dy **2)) )

23 # [...]

24 # Compute the final stiffness coefficients considering

25 # the median value

26 Cx_hat_final = statistics.median(Cx_hat_final)

27 Cy_hat_final = statistics.median(Cy_hat_final)

28 Cz_hat_final = statistics.median(Cz_hat_final)

Listing 4.1: Python snippet of the stiffness coefficients’ estimation as suggested by [78]

This linear model has the advantage of being easy to understand, imple-

ment and improve by complicating the force/displacement relations. In par-
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ticular, we decided to compute the 3 stiffness coefficients using the median

operator instead of the mean, being it more robust to outliers if data is not

normally distributed, as graphically shown in Figure 4.4 [45].

Figure 4.4: Mode, mean and median in 3 different data distribution scenarios [45].

To further motivate this decision, Figure 4.5 represents a histogram of the

sum of the stiffness coefficients computed during each iteration. All these

numbers are stored and, in the end, the 3 final coefficients are retrieved by

either selecting the mean, mode or median value. Considering that the created

dataset is balanced and wide regarding normal forces but pretty limited in the

X and Y components’ range, the
∑

Cx and
∑

Cy coefficients seem normally

distributed but the
∑

Cz are fairly skewed.

After the training process, the 3 constant coefficients are estimated and

testing can be done directly applying Equation 4.1 and Equation 4.2 together,

to retrieve the total force components.
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Figure 4.5: Histograms of the computed
∑

Cx,
∑

Cy,
∑

Cz coefficients during each iter-

ation.

4.1.3 Non-linearly compensated and marker-location based

estimation

As mentioned, this method takes inspiration from the previous one but tries

to improve some of its limitations due to the non-planar shape of our dome.

In fact, it’s more feasible to approximate a quasi-planar surface to a linear

elastic behavior than a hemispherical surface. Another assumption is that ev-

ery marker, meaning every region of the material, behaves the same in terms

of stiffness, deformation and elastic properties. Due to the several steps that

are required to manufacture the elastic dome, we experienced that many vari-

ables can affect the model’s stiffness and therefore it’s response to external

forces. We think that the previous method can rapidly give a good indication

of how stiff the material is, but could also lack of generalization and robustness

capabilities. For these reasons, we tried to improve this method by:

• considering the 29 markers independent of each other;
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• non-equally distributing the ground truth forces;

• creating a 29× 3 stiffness matrix (instead of a 1× 3 stiffness vector) so

that every marker has an elastic coefficient for every direction;

• applying force estimation using the same equations as before (Equations

4.1 and 4.2) but using the estimated stiffness corresponding to the k− th

marker.

How the 29 markers are properly sorted is explained in Subsection 4.1.9,

for now let’s assume that the input marker trajectories are sorted as shown in

Figure 4.6.

Figure 4.6: Sorting order of the 29 fiducial markers.

As Listing 4.2 shows, the ground truth forces are compensated with coeffi-

cients that were tuned based on the outcomes. In particular, the logic behind

their tuning is based on the percentage of the force that should be “absorbed”

by the region around the considered marker. Assuming that a normal force is

applied to the center of the dome, the central marker should be still no matter
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the intensity of the normal force, while on the farthest markers should be ex-

terted the least amount of force. If needed, this reasoning could be generalized

estimating the application point of the external force.

1 Cx_hat , Cy_hat , Cz_hat = [],[],[]

2 for k_it in range(num_iterations ):

3 # Ground truth forces corresponding to the k-th iteration

4 force_gt_x , force_gt_y , force_gt_z = train_labels[k_it , :]

5

6 Cx_hat_it , Cy_hat_it , Cz_hat_it = [], [], []

7 for marker_id in range(num_markers ):

8 dx = all_dx[k_it , marker_id]

9 dy = all_dy[k_it , marker_id]

10 #-------------------------------------#

11 if marker_id == 0: # central marker

12 compensation_fact = 0

13 elif marker_id in [4, 5, 12, 13]:

14 compensation_fact = 0.2/4

15 elif marker_id in [19, 20, 25, 26]:

16 compensation_fact = 0.3/4

17 elif marker_id in [3, 6, 11, 14]:

18 compensation_fact = 0.2/4

19 elif marker_id in [2, 7, 18, 27, 21, 24, 10, 15]:

20 compensation_fact = 0.15/8

21 elif marker_id in [1, 8, 9, 16, 17, 22, 23, 28]:

22 compensation_fact = 0.15/8

23 force_gt_x_new = force_gt_x * compensation_fact

24 force_gt_y_new = force_gt_y * compensation_fact

25 force_gt_z_new = force_gt_z * compensation_fact

Listing 4.2: Python snippet of the proposed ground truths’ compensation based on the

marker location

On this subject, a simple estimation of the force’s application point is pro-
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posed (but not integrated with the mentioned ground truths’ compensation).

To retrieve the force’s application point, the idea is to compute a weighted av-

erage of the initial markers’ coordinates, depending on their radius increment.

This way, we consider the correlation between size increase of the detected

blob and where the cause of deformation comes from. Figure 4.7 shows a

sequence of images collected by the fish-eye camera, with the superimposed

estimate of the application point (green) and area (blue), depending on the

force’s magnitude.

Figure 4.7: A sequence of images showing the estimated application point (green) and area

(blue), depending on the applied force’s magnitude.

Once the ground truth forces are compensated, the implementation is sim-

ilar to Listing 4.1, with the main difference that in this case 29 stiffness co-

efficients are estimated for each direction. Finally, after training, two testing

approaches can be exploited: compute the (Fx, Fy, Fz) forces using as a stiffness

scalar the mean or median value for every direction (Equation 4.6); compute

the resultant forces as a summation of the single components that every marker

absorbs (Equation 4.7), i.e.
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Cx = [cx0 , cx1 , ..., cx28 ] (4.3)

Cy = [cy0 , cy1 , ..., cy28 ] (4.4)

Cz = [cz0 , cz1 , ..., cz28 ] (4.5)

[Fx, Fy, Fz] = [
1

29

28∑
i=0

Cxdxi
,
1

29

28∑
i=0

Cydyi ,
1

29

28∑
i=0

Cz

√
d2xi

+ d2yi ] (4.6)

[Fx, Fy, Fz] = [
28∑
i=0

cxi
dxi

,

28∑
i=0

cyidyi ,

28∑
i=0

czi

√
d2xi

+ d2yi ] (4.7)

4.1.4 Linear Regression model

The ordinary least square Linear Regression model has been used, exploiting

the sklearn [60] library. As mentioned by the scikit-learn documentation, this

model is fitted to the training data in order to minimize the residual sum

of squares between the observed targets in the dataset and predictions made

by the linear approximation. In this case there aren’t hyperparameters to be

tuned.

4.1.5 K-Neighbors Regressor model

The sklearn [59] library implements a regressor model based on theK-Nearest

Neighbors model, typically used for classification tasks. As graphically shown

in Figure 4.8, given a set of X training samples and a new sample to classify,

the distance between the new point and all the other points is computed;

the new sample is then classified as belonging to the most frequent class that

appears inside the new point’s “neighbourhood”.

On the other hand, theK-Neighbors Regressor model can be used when

the dataset’s labels are continuous rather than discrete variables. The label
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Figure 4.8: Graphical representation of the KNN algorithm [13].

assigned to a query point is computed based on the mean of the labels of its

nearest neighbors. The main hyperparameters to be tuned are:

• n neighbors : the number of samples to be considered as neighbors (K);

• metric: the distance metric to be used for detecting the closest neigh-

bors (minkowski, cityblock, cosine, euclidean);

• weights : the weighting policy that is applied to the neighborhood (uni-

form, distance); Figure 4.9 shows how the “weights” parameter can affect

the estimation results.

To choose the best parameters, the sklearn.model selection.GridSearchCV()

function is used (not only for this, but also for the following algorithms).

To briefly explain this function, given the hyperparameters to try, it iterates

among all the possible options, returning the best combination (based on the

achieved accuracy on the trainset). Once GridSearch is performed, the model

with the best parameters is created and fitted on the training data.



Chapter 4 Experimental results 94

Figure 4.9: The effect of the “weights” parameter on the estimates. The default value is

“uniform” and assigns equal weights to all points; “distance” assigns weights proportional

to the inverse of the distance from the query point [59].

4.1.6 Support Vector Regression model

The sklearn [59] library implements a regressor model based on the Support

Vector Machine model, typically used for classification tasks. SVM is a

binary classification technique that uses the training dataset to predict an op-

timal hyperplane in an N -dimensional space, to separate data into two classes.

The identified hyperplane is called decision boundary and by definition, it will

always have one less dimension than the data space it is built in (e.g. a line

in 2D space is a hyperplane of dimension 1). To identify the optimal decision

boundary that will clearly separate the different classes, SVM uses Support

Vectors, which are the closest data points to the edge of each class and are

the most difficult points to correctly classify. The other, more generic data

points are ignored for determining the boundary. The distance between the

hyperplane and the support vectors are called margins and those need to be

maximized by the model to retrieve the optimal decision boundary. Support
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Vector Machines are able to separate both linear and non-linear distributed

data, using the so called kernel trick. A kernel is a function that can be

used to transform a dataset into higher-dimensional space so that the data be-

comes linearly separable. The kernel trick effectively converts a non-separable

problem into a separable one by increasing the number of dimensions in the

problem space and mapping the data points to the new problem space. Figure

4.10 shows how SVM can be applied to linearly separable data, using the “lin-

ear” kernel; Figure 4.11 shows some examples of non-linearly separable data

and how can be separated using non-linear decision boundaries.

Figure 4.10: Application of SVM in case of linearly distributed data [50].

Moreover, SVM and, consequently SVR doesn’t support multiclass classifi-

cation natively, so we trained 3 different models to estimate each component of

the force. In particular, we used the sklearn.svm.SVR() function to exploit the

so called Support Vector Regression model. The implementation is based

on the libsvm library and it exploits the concept of Support Vector Machines

and re-adapts it to a continuous classification problem, that is regression. The

main hyperparameters we tuned are:

• kernel : the type of kernel (linear, poly, rbf, sigmoid);

• C : the cost, used to regularize data with an inverse proportionality.
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Figure 4.11: Application of SVM in case of non-linearly distributed data [50].

4.1.7 Neural Network Sequential model

We used the keras [37] library to create a simple Neural Network Sequential

model. In particular, Figure 4.12 shows the Neural Network’s structure that is

composed of a normalization layer fitted on the training dataset, two hidden

layers (Dense) with a depth of 64 and Rectified Linear Unit (ReLu) and a final

Dense linear layer that outputs the three estimated force components. The

model was compiled using a standard Adam optimizer to minimize the Mean

Squared Error (MSE). This rather simple model has a total of 8248 parameters

of which 8131 are trainable.
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Figure 4.12: Left: a graphical representation of the chosen Sequential model using the

plot model() function; Right: a generic example of 2-hidden layers Neural Network [12].

4.1.8 Deep Convolutional Neural Network model

Finally, we exploited a Deep-CNN model implemented by the keras [36]

library. In particular, several models were tested and based on the Mean

Squared Error metric we chose the best performing architecture and respective

hyperparameters. In this case the models are “Deep” in the sense that the

number of trainable parameters is in the order of millions, while the number

of hidden layers (that determine the depth) goes from 16 (e.g. VGG16) all the

way to 152 (e.g. ResNet152). Those models tend to be time consuming to train

and they’re hardly interpretable, meaning that it’s difficult to understand why

certain decisions or predictions have been made. Nonetheless the achievable

performance due to the deep extracted features can be outstanding. This is

true especially when the tasks to perform are non-trivial; later in the Chapter

we’ll be discussing if this is required in our case study. Moreover, this is

the only case in which we didn’t input time series to the model, but images

instead. As mentioned, CNNs are built to work with images through the use
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of Convolutions. So, we tried to give the model both binarized images with

a white background and black dots, representing the 29 fiducial markers and

(during another training istance) raw RGB images recorded by the fish-eye

camera (examples are shown in Figure 4.13).

Figure 4.13: On the left the raw image sensed by the fish-eye camera; on the right the

binarized image.

4.1.9 Feature extraction

Important aspects when training a Machine Learning or Deep Learning model

is feature selection and extraction. After collecting and pre-processing the

dataset, we tried to extract features without mixing the samples and noticed

that every algorithm didn’t perform good enough. To make the models more

robust and to make them converge faster, the sklearn.model selection.train test split()

function was found to be essential. As shown in Listing 4.3, the whole dataset

is divided in 80% train of which a 10% used for validation during training, and

20% test. To give a quantitative measure the training set is composed by 897

samples, following the validation set with 100 samples and the testing set with

250 samples.

1 from sklearn.model_selection import train_test_split

2 # Split dataset between train and test

3 train_features , test_features , train_labels , test_labels =
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4 train_test_split(all_features , all_labels , test_size =0.2,

5 random_state =42)

6 # Split trainset between train and validation

7 train_features , valid_features , train_labels , valid_labels =

8 train_test_split(train_features , train_labels , test_size =0.1,

9 random_state =42)

Listing 4.3: Python snippet showing how the dataset is divided between train, test and

validation.

Features were extracted with several different methods to compare the re-

sults and understand the amount of required information and depth to properly

characterize the sensing device. In fact, using 2 or 3 features instead of millions

like in Deep Neural Network approaches can seem a huge loss of information,

but on the other hand the DCNN could easily overfit data while a simple lin-

ear estimation could generalize more due to a feature extraction with limited

depth. We implemented and tested 8 different methods for feature extrac-

tion (on top of which there’s the possibility of scaling the features through a

MinMaxScaler):

1. the average displacement of the 29 markers along the horizontal and

vertical axis (2 features);

2. the average displacement of the 29 markers along the horizontal and

vertical axis, the average radius increment and decrement (4 features);

3. the average absolute displacement of the 29 markers along the horizontal

and vertical axis (2 features);

4. the average absolute displacement of the 29 markers along the horizontal,

vertical axis and radius measurement (3 features);
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5. the 29 sorted horizontal and vertical coordinates of the markers (58

features);

6. the 29 sorted coordinates and radii of the markers (87 features);

7. the 29 sorted horizontal and vertical displacements of the markers (58

features);

8. the 29 sorted horizontal, vertical and radius displacements of the markers

(87 features).

To briefly explain how the 29 markers were sorted, the developed algorithm

can be summed up with the following steps (assuming that the dome is installed

in a fixed position with respect to the inner camera):

• detect the 29 markers in the first frame;

• given the markers’ pattern as a prior information, use the RANSAC

(RANdom SAmple Consensus) [61] algorithm to fit the vertical line;

• sort the vertical inliers according to the indexing shown in Figure 4.14;

• use the RANSAC algorithm to fit the horizontal line on the remaining

20 markers (considered to be outliers in the previous step because they

don’t lie on the vertical line);

• sort the horizontal inliers according to Figure 4.14;

• repeat the same process for the remaining markers placed on the two

diagonals;

• whenever a new array of 29 coordinates is given, it will be automatically

sorted (using the Euclidean distance metric) according to the initial sort-

ing, that in this case doesn’t change between different trials.
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Figure 4.14: Sorting order of the 29 fiducial markers.

4.2 Comparison of the results

In this Subsection the obtained results are presented, starting from the evalua-

tion on the testing portion of the collected dataset to the online validation with

the robotic gripper.

4.2.1 Evaluation on the testset

Figures 4.18, 4.19, 4.20 and 4.21 show the best achieved results while esti-

mating the (FX , Fy, Fz) force components, with all the models that require

numerical data (KNN, SVR, LR, Sequential NN, linear and non-linear meth-

ods). Moreover, Figures 4.15, 4.16 and 4.17 show a comparison of the achieved

MSE values for each feature type/scaling combination (a total of 16 possibili-

ties). To better understand the following graphs, some observations should be

done:

• Mean Squared Error is the evaluation metric that is used to compare

the results, even though the code allows to compute other metrics (such

as Root Mean Squared Error, R2 score, Mean Absolute Error);
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• the force estimates that overcome 100% MSE are not plotted, this keeps

the graphs more readable by removing unnecessary information; the same

concept applies for histograms (Figures 4.15, 4.16 and 4.17) where the

unsignificant results are represented by negative MSE values;

• all the models were trained, validated and tested on the same portion of

dataset, randomly splitted by the mentioned train test split() function;

• the histograms shown in Figures 4.15, 4.16 and 4.17 depict the 16 feature

type/scaling combinations’ MSE. This comparison is useful to under-

stand if any improvement is achieved when increasing the number and

complexity of features and to visualize the effect of feature scaling.

Among all the possible combinations, the best performing options’ results

are shown. Particularly, Figure 4.18 shows force estimates when feature option

number 2 is selected (Option 2. in the list); due to the low number of features

(only 2) the best result is achieved by KNN with a MSE of 14.1%. Figure 4.19

shows force estimates when feature option number 5 is selected (Option 5. in

the list). In this case 58 features representing each markers’ horizontal and

vertical displacements are extracted and the best achieved MSE is 6.3%, scored

by the Linear Regressor. Figure 4.20 shows force estimates using 87 features;

similarly to the previous option but including the radii’s displacements (Option

6. in the list). Figure 4.21 shows force estimates using the 58 sorted horizontal

and vertical displacements (Option 7. in the list) improving performance of

KNN to a MSE of 2.86%.

As shown in Figures 4.18, 4.19, 4.20 and 4.21, the normal force Fz is es-

timated with a considerable MSE that, depending on the type of extracted

feature and used model ranges from 2% to above 100%. Moreover, due to how

the sensing device was calibrated, forces are not estimated with the same relia-
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bility along the 3 directions. Meaning that the dataset is strongly limited along

(X, Y ) while the (Z) ground truths are more linearly and widely distributed.

We think that an unneglectable bias was introduced during data collection

and pre-processing, resulting in limited estimation accuracy. Nonetheless, the

developed software pipelines can be easily exploited to re-calibrate the sensing

device on a wider dataset, including significant shear (tangential) forces. We

experimented that the device is sensible enough to perceive normal deforma-

tions of 1mm, showing that a wider data collection could lead to significant

improvements of the Machine Learning models.

Figure 4.22 shows force estimates without shuffling the testset; this allows

to better visualize the forces’ trends. As we can see, ground truths are some-

times affected by spikes and noise, even though moving average is performed,

that could worsen models’ performance. Moreover, the estimates tend to cor-

rectly follow the increasing or decreasing trends but slower than the ground

truths.

Regarding the Deep Convolutional Neural Network, the achieved results

proved to be comparable with the Machine Learning algorithms in terms of

performance, with the main difference that the required time to retrieve pre-

dictions has to be taken into account. Figures 4.23 and 4.24 show the train and

validation losses (MSE) respectively when raw RGB images and binarized im-

ages are used as input of the models. Figures 4.25 and 4.26 show the achieved

Mean Squared Error when testing on the unseen portion of the dataset. In

both cases, after a GridSearch processing, we chose a ResNet50 Deep Convo-

lutional Neural Network model pre-trained on ImageNet [31] with a learning

rate of 0.001, a dropout probability of 0.5 and an Adam optimizer, that we

trained for 50 epochs.
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Figure 4.23: ResNet50 train and validation loss considering raw RGB images as input.

Figure 4.24: ResNet50 train and validation loss considering Binarized images as input.
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Table 4.1 shows the best achieved result by every force estimation approach,

in terms of Mean Squared Error, when evaluated on the test portion of the

dataset. To notice that only the Fz components is considered, being it more

representative of the actual models’ performance. According to our experi-

ments KNN obtained the best results during testing, so we chose to use it

during the harvesting task.

Model Feature option Number of features Feature scaling Best MSE

Linear elastic force approximation - 2 - ≥ 200%

Non-linear compensation - 58 - ≥ 200%

Linear Regression 6. 87 Yes 6.16%

K-Neighbors Regressor 7. 58 No 2.86%

Support Vector Regression 6. 87 Yes 11.36%

Sequential Neural Network 6. 87 Yes 6.72%

Deep Convolutional Neural Network - 224× 224× 3 - 14.38%

Table 4.1: Summary of the best performance achieved by every model evaluated on the

testset (MSE values refer to the Fz component).

4.2.2 Evaluation with the robotic gripper

Once the initial dataset was exploited to both train and evaluate the algo-

rithms, the fitted models were further evaluated on the real setup. To do that,

the ATI Nano force/torque sensor was fixed into a position and the robotic

hand was closed at different speeds and widths (as shown in Figure 4.27). Af-

ter collecting data from the sensor and the models, predictions were compared

against ground truth forces, as shown in Figures 4.28, 4.29 and 4.30. To ac-

quire the necessary data the ROS environment was used and a series of scripts

were implemented in order to log images and json streams containing the esti-

mated forces, markers’ trajectories and application point. As previously done

during the dataset collection, ground truth forces were stored inside a “rosbag”
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reading the netft data topic [76].

Figure 4.27: Photographs of the force estimation validation setup.
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4.2.3 Real-time force feedback and strawberry detec-

tion

In this Subsection the fruit-picking task is attempted and qualitative and quan-

titative results are shown. As mentioned at the beginning of this Thesis, the

aim of a soft gripper is to gently grasp deformable objects without squeezing or

damaging them. To demonstrate that this is possible, even though the gripper

design and control architecture can be improved, we setup a series of straw-

berry plants, emulating a sort of hydroponic culture (shown in Figure 4.31).

Figure 4.31: Photograph showing how strawberry plants were setup (emulating a hydroponic

culture) to perform the picking task.

Afterwards, we tried to perform a simple harvesting task, starting from the

detection of the ripe fruit, all the way to the picking of the strawberry with a

suitable motion. This pipeline was implemented in ROS with mainly Python

scripts handling the nodes. In fact, the first developed ROS node provides

the real-time force feedback using the online estimation pipeline based on the
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gripper’s deformation (KNN was found to be the most reliable model to use);

the second developed node takes care of fruit detection exploiting a pre-trained

CNN (YOLOv3) model, that was fine-tuned on a small strawberry dataset for

object detection (about 600 images). Figure 4.32 shows a qualitative result of

the trained CNN for strawberry detection; it is able to locate the boundaries

of the fruit while classifying it as ripe or unripe with a level of certainty.

Figure 4.32: Qualitative result of the fine-tuned CNN tested on one of the plants used for

the setup shown in 4.31.

The developed real-time pipeline requires some supervision due to the tem-

porary setup and a non-perfectly tuned Neural Network and consists in the

following steps:

• as shown in Figure 4.33, the robotic harm is placed around 50cm away

from the plants and uses the RGBD camera information to both find

ripe fruits and compute the 3D location of their central point (center of

the estimated 2D bounding box) with respect to the camera;

• the estimated 3D point approximately represents the strawberry bari-
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center with respect to the camera. That coordinate is then transformed

(exploiting hand-eye calibration results) with respect to the robot’s base

reference frame;

• as shown in Figure 4.34, the gripper, that is still open, approaches the

target point published on a specific ROS topic according to a properly

tuned impedence control law;

• once the gripper is correctly positioned, the closing command is published

to the frank gripper/MoveActionGoal topic;

• based on the received real-time force feedback, the gripper is stopped to

the current position (publishing the last width value), when the normal

force reaches the 1.75N threshold (Figure 4.37 shows the real-time force

feedback that was estimated during the picking task);

• when the force feedback stabilizes, the gripper performs the suggested

picking pattern for strawberries; in particular it slowly rotates and moves

back with respect to the plant, harvesting the fruit (this is represented

by Figures 4.35 and 4.36).

Figure 4.33: Phase 1: detection and localization of the ripe fruit.



Chapter 4 Experimental results 123

Figure 4.34: Phase 2: approach of the ripe strawberry given the 3D target point.

Figure 4.35: Phase 3: application of the picking pattern to harvest the strawberry.

Figure 4.36: Image sensed by the fish-eye camera when the dome is deformed, with the

superimposed detected markers.
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Chapter 5

Conclusions

Most of the state-of-the-art work on soft tactile sensors focuses on finger-like or

“palmar” soft grippers, that have a quasi-planar geometry, leading to simpler

force estimation and overall characterization. We proposed a hemispherical

cheap to manufactured 3D printed soft gripper that allows to gently grasp ob-

jects. We characterized the sensing device by chosing a suitable placement and

density of fiducial markers. By exploiting several Machine Learning and Deep

Learning approaches we estimated forces exerted on the dome’s surface that

were reasonable and sufficient to attempt a picking task. In fact, even though

several improvements can be made, the force estimates are stable, allowing to

easily set a threshold for stopping the Franka Hand gripper’s closure. More-

over, on a real scenario it would be required to gently grasp and handle the fruit

or vegetable to preserve its quality, meaning that fast pick and place control

isn’t probably required nor useful. The proposed force estimation techniques

heavily rely on Computer Vision, Machine Learning algorithms and calibra-

tion of the device. This means that software updates could surely improve

the estimation performance and add new features without necessarily chang-

ing the design. Future developments could focus on this subject, providing

125
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Figure 5.1: Photographs of the developed sensing device holding a strawberry without

squeezing it.

a fully automated calibration process. Also, the fruit detection and picking

results should be made more robust against environmental disturbances. To

conclude, this was a motivating and inspiring project to work on, also due to

the interest that the agricultural industry demonstrates to put into practice

the “4.0 transition”.
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