

Electroheat technologies: physical principles and economics

Prof. Fabrizio Dughiero Electromagnetic Processing of Materials Department of Industrial Engineering University of Padova Italy Fabrizio.Dughiero@unipd.it

Copyright rules

- All that is reported in these slides, documentation, contents, texts, images, the logo, the artistic work and the graphics are owned by prof. Fabrizio Dughiero, are protected by copyright and intellectual property rights. It will therefore be absolutely forbidden to copy, appropriate, redistribute, reproduce any phrase, content or image present in this presentation because it is the result of the work and intellect of the author himself.
- Copying and reproduction of content and images in any form are prohibited
- Redistribution and publication of content and images not expressely authorized by the author are prohibited.

Course Contents

- Module I
 - Introduction to Electroheat Technologies
 - External sources technologies
 - Internal sources technologies
- Module II
 - Economics of Electroheat Technologies
 - Replacement coeffcient
 - Cost saving

Module I: Introduction to Electroheat Technologies

Electroheat technologies transform electricity into heat for different end uses (heat treatments, food processing, chemical reactions, biomedical applications etc.)

Main characteristics of electroheat processes

Hig tempera	jh atures	High dens	High power densities		sources de the kpiece	
Short h	Short heating times		High frequencies		omation	
	High ef	fciency	Cont tempe distrib the wo	trol of erature ution in orkpiece		

WORK ENVIRONMENT IMPROVEMENT

Electroheat technologies allow cost saving and are sustainable

Saving primary energy

Reduction of emissions of CO₂

Reduction of industrial operating costs

Improvement of product quality

Classification of Electroheat Technologies

Heat transfer mechanisms

Radiation Convection Conduction

Electric Arc Furnace

Typical Applications:

- Melting of various metals: steel, cast iron, etc.
- Production of ferrous alloys (e.g. FeSi, FeCr, FeMn)
- Vacuum remelting of ingots of special metals

Three-phase arc furnace

Energy Balance

(heat losses can be used for preheating scrap material)

Indirect resistance heating

Examples of Application:

- Melting and holding of metals
- Heat treatments
- Baking of ceramics
- Drying processes in textile, paper and wood industry
- Warming of fluids, gases and water
- Food Technologies

Infrared heating

Infrared heating is the mechanism under which a source at high temperature delivers heat to a work-piece (food) at lower temperature by means of electromagnetic radiation.

Infrared cooking

- Infrared cooking is mainly used for browning but it can be used also for cooking.
- Radiation can penetrate the food depending on the wavelength (short wavelength high penetration) and depending on absorbtion coefficient and emissivity of food.
- Infrared is very rapid (short wavelength lamps)
- It's easy to control (voltage is the main control quantities)
- Life time of lamps is sometimes limited
- Pollution (steam, fats, oils) inside a oven can deteriorate the performances of lamps and the reflections of walls

Heating by Electromagnetic Sources

- Traditionally people use **external heating** methods for cooking. Only in the last years MW has been considered as an internal cooking method reliable for fast and quality cooking
- In order to be sure that the temperature inside food reaches a proper value, we need to wait for a certain time due to the conductivity of the material. Heat flux depends on temperature gradient.
- Volumetric or "internal heating" has a completely different heat transfer mechanism in comparison with external heating

Heating by Electromagnetic Sources

- Microwave, Radio Frequency, Conduction and Induction are all «internal source heating» techniques.
- Microwave and Radiofrequency work on dielectric (non conductive) materials like most of foodstuff.
- Induction and conduction work on conductive materials like pans and pots and on special food (hot dogs).

The main advantages of these techniques are:

- Fast (high values of power density)
- Precise (the electromagnetic field can be controlled in space and time)
- Efficient (most of these techniques deliver heat inside the workpiece this means low heat losses)
- Controllable (all these techniques are supplied by electricity)
- Clean (no pollution for combustion process)
- Safe (non free flames, no high temperatures)

Direct resistance heating

Examples of Application:

- Melting of glass
- Heating of billets, wires, tubes
- Graphite production
- Electrolysis of aluminium
- Heating of liquids
- Steam production

Direct resistance heating

Direct resistance heating

Continuous heating of sheets

Conduction heating

- Conduction heating is based on a very simple physical principle: the ohm and Joule law
- We apply a voltage between two terminals of the food and a current will flow in it.
- The current will produce heat inside the food

Induction heating

THROUGH HEATING OF TUBES

Examples of Application

- Through heating for forging or rolling
- Heat treatments of metals (hardening, annealing, tempering)
- Melting of ferrous, heavy and light metals
- Induction cooktops

Induction melting

Induction Crucible Furnace (ICF)

Induction through heating

Induction Hardening

Induction welding of tubes

High Frequency Heating

When we want to *heat food* by means of MWO or RF we apply an *Electric Field*

at high frequency in order to *induce electrical currents* inside it

Food molecules in normal condition

High Frequency Heating

Electric Field at high frequency makes the molecules

moving around their steady position

and the food can be heated by the **Joule effect** due to the so called

displacement current

Microwave Heating

MW and RF Heating

The load is positioned inside a

resonating cavity

the distribution of EM energy is

not uniform

because of the

small wavelength (12 cm for 2.45 GHz, 32 cm for 915 MHz) The load is positioned inside a

big capacitor

the distribution of EM energy is

quite uniform

because of the

large wavelength

RF Heating: how it works

Microwave oven: how it works

Penetration Depth in foods

Food characteristics for MW

inovaLab

How the food influences the heating process

Behaviour of MW heating @2450 MHz

Material	Dielectric constant (F m ⁻¹)	Loss factor	Penetration depth (cm)
Banana (raw)	62	17	0.93
Beef (raw)	51	16	0.87
Bread	4	0.005	1170
Brine (5%)	67	71	0.25
Butter	3	0.1	30.5
Carrot (cooked)	71	18	0.93
Cooking oil	2.6	0.2	19.5
Distilled water	77	9.2	1.7
Fish (cooked)	46.5	12	1.1
Glass	6	0.1	40
Ham	85	67	0.3
Ice	3.2	0.003	1162
Paper	4	0.1	50
Polyester tray	4	0.02	195
Potato (raw)	62	16.7	0.93

Dielectric Heating

Frequencies: 13,56 MHz
 27,12 Mhz
 40,68 MHz
 Amplifier: oscillator on C class

Examples of Application:

- Drying of textiles, leather, paper and board
- Food and drugs processing
- Plastics preheating and welding
- Rubber processing
- Wood glueing and drying
- Ceramics drying and heating

RF Drying

Microwave Heating

Examples of Application:

- Drying of textiles, leather, paper and board
- Food and drugs processing
- Rubber processing
- Wood drying
- Ceramics drying and heating
 - Generator:
 - Magnetron
 - Solid state amplifiers

MW heating in Food Processing

5

Re-heating food in a canteen (550 meals per day)

Redistribution and publication of content and images not expressly authorized by the author are prohibited.

(D)

MW cooking

MW heating allows you to significantly reduce the cooking process times by creating heat sources directly inside the food, but it is an uneven process.

The new technology of the solid state generators allows to control the distribution of the EM field and increase the uniformity of the heating.

Energy density distribution [J/m³];

Temperature distribution [°C]; Initial temperature 12 °C; each sequence for 45 s

Drying

It is an energy-consuming and long-lasting process that reduces the moisture content.

The traditional air process can be divided into 3 phases:

- **period with constant drying rate:** the surface is kept wet by the constant flow of capillary water guided from inside the particle. The factors that determine and limit the drying rate are related to air.
- **first period of decrease in the drying constant:** the drying rate drops sharply.
- second period of decrease in the drying constant: the drying rate drops more slowly.

Drying time (h)

The MW process has 2 advantages over the traditional process:

- temperature and humidity gradient are directed in the same direction;
- the MW act on the residual moisture component in the load.

The main advantage of MW therefore consists in speeding up the process, especially in products with a low humidity content (where the air is struggling to act).

Combined MW + convection drying systems are often used, in series or in parallel.

Final, primary and CO₂ energy in the different drying technologies

Advantages of MW heating:

- Heating rate
- Energy saving
- Production rate increasing
- Reduction of CO2
 emissions

Module II

Energy equivalences and primary energy saving

Theretical Energy equivalences

1	=	4184	=	1.16	=	4184	=	427
kcal		J		Wh		Nm		kgm
1	=	3600	=	0.86	=	3600	=	368
Wh		J		kcal		Nm		kgm

Example N.1

Energy needed to heat one kilogram / liter of water from 0 to 20 °C

427 Kgm • 20 = 42,7 q • 2 m

Example N.2

From a tube with a diameter of 10 mm, heated water from 10 to 60 °C comes out at the speed v = 2 m / s; How many 40 W lamps can light up with the same power?

- Water flow rate: $q = v (\pi \cdot d^2/4) = 0.157$ l/s
- Power: $P = q \cdot c \cdot (\theta_2 \theta_1) = 0.157 \cdot 4184 \cdot 50 = 32,87 \text{ kW}$
- Lamps number: **n = 32870 / 40 = 822 !!!**

Energy equivalences and use of primary energy [Coal]

Theoretical

•1000 [kcal] = 4,184 • 10⁶ [J] =

1,16 [kWh]

- Coal = 7.000[kcal/kg]
- 1000 [kcal] = 0,143 [kg]
- 1 [kWh] = 0,143 / 1,16 = 0,123 [kg]

Practical

• Average efficiency of a typical power plants system:

η ≈ 0,37

- Energy equivalence:
 - **1 [kWh] =** 0,123 / 0,37 = 0,332 [kg] =

2310 [kcal] = 9,7 [MJ]

Primary Energy-Electricity equivalence (Assumption only thermal power plants with η=37%)

transformation and transmission losses

1 kWh of electricity at end user side

10 MJ of primary energy

Primary Energy-Electricity equivalence (Current assumption with renewable energy η=55%)

1 kWh of electricity at end user side

7 MJ of primary energy

Energy balance of a thermal process with direct use of fuel

Energy balance of an electroheat process or with the use of electricity

inovaLab

Processes with use of fossil fuel and use of electricity

Saving of primary energy and coefficient " γ "

When C1> C2 and E1 <E2, by replacing process 1 with process 2, the "γ" MJ of fuel is replaced with 1 kWh of electricity.
A primary energy saving occurs when it turns out :

 $\gamma > 10$ (Thermal power plants)

$\gamma > 7$ (Current power plants with renewable energy)

Typical values of " γ " [MJ/kWh]

 Drying of food at High Frequency: 	9.6
 Induction boiling of H₂O: 	10.5
 Electric heating of water: 	18.8
 Drying by heat pump: 	19.2
 Concentration of dairy products: 	54.4

Economic convenience for the end user

$$\beta = \frac{K_E}{K_C} \quad \begin{array}{l} \bullet \ {}^{K_E} - \ \text{Cost of Electricity [€/kWh]} \\ \bullet \ {}^{K_C} - \ \text{Cost of fuel [€/MJ]} \end{array}$$

It is necessary to evaluate the performance of individual processes and quantify the amount of the cost of energy spent in MJ of gas / petrol / fuel oil compared to the cost of electricity. This also depends on the country by country base within Europe.

Example: H₂O Induction and gas

1	=	4184	=	1.16	=	4184	=	427
kcal		J		Wh		Nm		kgm
1	=	3600	=	0.86	Ш	3600	=	368
Wh		J		kcal		Nm		kgm

Useful energy to heat a liter of water from 0 to 100 °C 4184 J • 100 = 418400 J= 0,116 kWh

- •Efficiency of a gas heating approx η =30%
- •*Efficiency of an induction heating approx* η =90%
- •Energy required for gas heating E_{gas}=0,116/0,30=0,387 kWh=1,392 MJ
- Energy required for Induction heating E_{el}=0,116/0,90=0,129 kWh

γ=1,392/0,129=10,79 [MJ/kWh]

PRIMARY ENERGY SAVING

Gas and electricity prices for some European countries

Electricity and gas prices in Europe (non domestic users)									
Country	Electricity EE [€/kWh]	Natural Gas NG [€/kWh]	Ratio EE/NN	Natural Gas [€/MJ]	Beta [€/kWh/€/MJ]				
Italy	0,166	0,034	4,857	0,010	17,484				
Germany	0,156	0,032	4,896	0,009	17,626				
Spain	0,115	0,031	3,727	0,009	13,418				
France	0,102	0,038	2,709	0,011	9,752				
Poland	0,100	0,035	2,890	0,010	10,406				
Romania	0,097	0,032	3,066	0,009	11,038				
Serbia	0,083	0,039	2,136	0,011	7,689				
Denmark	0,071	0,034	2,098	0,009	7,553				

Electricity and gas prices in Europe (domestic users)								
Country	Electricity EE [€/kWh]	Natural Gas NG [€/kWh]	Ratio EE/NN	Natural Gas [€/MJ]	Beta [€/kWh/€/MJ]			
Italy	0,230	0,077	2,992	0,021	10,772			
Germany	0,309	0,063	4,886	0,018	17,590			
Spain	0,240	0,074	3,265	0,020	11,754			
France	0,177	0,074	2,398	0,020	8,633			
Poland	0,134	0,047	2,839	0,013	10,222			
Romania	0,136	0,035	3,914	0,010	14,089			
Serbia	0,071	0,034	2,113	0,009	7,608			
Denmark	0,298	0,086	3,490	0,024	12,564			

Example: H_2O Induction and gas $\gamma = 10,79$

Italy

- Electricity cost in Italy for domestic user: 0.230 € / kWh
- Cost of gas in Italy per domestic user: € 0.077 / kWh
- \Box $\beta_{ltaly}=10,772$
- Cost for gas heating = 0.387 * 0.077 = 0.0298 €
- Cost for Induction heating = 0.129 * 0.230 = 0.0297 €

France

- Electricity cost in France for domestic user: 0.177 € / kWh
- Cost of gas in France per domestic user: 0.074 € / kWh
- \Box β_{France} =8,633
- Cost for gas heating = 0.387 * 0.074 = 0.0286 €
- Cost for Induction heating = 0.129 * 0.177 = 0.0228 €

Electricity prices, first semester of 2017-2019

(EUR per kWh)

		Households (1)		Non-households (²)			
	2017\$1	201851	201951	201751	2018S1	201951	
EU-28	0.2043	0.2066	0.2159	0.1146	0.1152	0.1251	
Euro area	0.2210	0.2214	0.2294	0.1224	0.1215	0.1306	
Belgium	0.2857	0.2733	0.2839	0.1104	0.1085	0.1147	
Bulgaria	0.0955	0.0979	0.0997	0.0763	0.0810	0.0887	
Czechia	0.1438	0.1573	0.1748	0.0688	0.0733	0.0768	
Denmark	0.3049	0.3126	0.2984	0.0845	0.0807	0.0707	
Germany	0.3048	0.2987	0.3088	0.1519	0.1499	0.1557	
Estonia	0.1207	0.1348	0.1357	0.0870	0.0865	0.0917	
Ireland	0.2305	0.2369	0.2423	0.1237	0.1321	0.1400	
Greece	0.1711	0.1672	0.1650	0.1073	0.1038	0.1059	
Spain	0.2296	0.2383	0 2403	0 1061	0 1059	0 1148	
France	0.1704	0.1748	0.1765	0.0978	0.0982	0.1024	
Croatia	0.1196	0.1311	0.1321	0.0874	0.0994	0.1034	
Italy	0.2132	0.2067	0.2301	0.1477	0.1423	0.1661	
Cyprus	0.1863	0.1893	0.2203	0.1414	0.1405	0.1619	
Latvia	0.1586	0.1531	0.1629	0.1179	0.1039	0.1052	
Lithuania	0.1116	0.1097	0.1255	0.0837	0.0838	0.0926	
Luxembourg	0.1615	0.1671	0.1798	0.0780	0.0833	0.0897	
Hungary	0.1125	0.1123	0.1120	0.0772e	0.0840	0.0970	
Malta	0.1328	0.1285	0.1305	0.1351	0.1346	0.1392	
Netherlands	0.1562	0.1706	0.2052	0.0822	0.0863	0.0941	
Austria	0.1950	0.1966	0.2034	0.0930	0.0997	0.1076	
Poland	0.1446	0.1410	0.1343	0.0866	0.0876	0.1003	
Portugal	0.2284	0.2246	0.2154	0.1145	0.1123	0.1186	
Romania	0.1198	0.1333	0.1358	0.0769	0.0831	0.0972	
Slovenia	0.1609	0.1613	0.1634	0.0784	0.0860	0.0959	
Slovakia	0.1435	0.1566	0.1577	0.1118	0.1166	0.1286	
Finland	0.1581	0.1612	0.1734	0.0667	0.0681	0.0709	
Sweden	0.1936	0.1891	0.2015	0.0648	0.0684	0.0738	
United Kingdom	0.1766	0.1887	0.2122	0.1264	0.1337	0.1517	
Iceland	0.1598	0.1545	0.1406	0.0795p	0.0769e	0.0579	
Liechtenstein	0.1724	:	:	0.1296	:		
Norway	0.1642	0.1751	0.1867	0.0711	0.0778	0.0829	
Montenegro	0.0983	0.1024	0.1032	0.0775	0.0810	0.0868	
North Macedonia	0.0820	0.0781	0.0783	0.0524	0.0624	0.0687	
Albania	0 0844	•	•	•	•		
Serbia	0.0664	0.0705	0.0706	0.0639	0.0704	0.0833	
Turkey	0.1048	0.0904	0.0847	0.0634	0.0589	0.0706	
Bosnia and Herzegovina	0.0859	0.0864	0.0873	0.0594	0.0661	0.0667	
Kosovo (³)	0.0662	0.0633	0.0600	0.0798	0.0746	0.0660	
Moldova	0.0977	0.1020	0.0936	0.0828	0.0880	0.0771	
Georgia		0.0685	0.0809		0.0489	0.0595	
Ukraine	0.0393	0.0410	0.0442	•	0.0595	0.0656	

(:) not available

(p) Provisionnal

(1) Annual consumption: 2 500 kWh < consumption < 5 000 kWh.

(*) Annual consumption: 500 MWh < consumption < 2 000 MWh.

(*) This designation is without prejudice to positions on status, and is in line with UNSCR 1244/1999 and the ICJ Opinion on the Kosovo Declaration of Independence.

Source: Eurostat (online data codes: nrg_pc_204 and nrg_pc_205)

Natural gas prices, first semester of 2017-2019

(EUR per kWh)

		Households (1)		Non-households (2)			
	2017\$1	201851	201951	2017\$1	201851	201951	
EU-28	0.0583	0.0591	0.0632	0.0295	0.0306	0.0327	
Euro area	0.0650	0.0662	0.0711	0.0307	0.0316	0.0335	
Belgium	0.0522	0.0536	0.0554	0.0235	0.0231	0.0239	
Bulgaria	0.0330	0.0379	0.0449	0.0218	0.0256	0.0308	
Czechia	0.0550	0.0575	0.0586	0.0238	0.0256	0.0293	
Denmark	0.0888	0.0872	0.0855	0.0333	0.0373	0.0337	
Germany	0.0611	0.0608	0.0632	0.0317	0.0317	0.0318	
Estonia	0.0418	0.0401	0.0458	0.0276	0.0306	0.0343	
Ireland	0.0632	0.0632	0.0683	0.0332	0.0342	0.0342	
Greece	0.0560p	0.0532e	0.0555	0.0283p	0.0291e	0.0299	
Spain	0.0667	0.0665	0.0736	0.0273	0.0290	0.0308	
France	0.0639	0.0665	0.0736	0.0332	0.0352	0.0378	
Croatia	0.0359	0.0368	0.0375	0.0246	0.0256	0.0299	
Italy	0.0704	0.0714	0.0769	0.0271p	0.0286	0.0342	
Latvia	0.0378	0.0385	0.0446	0.0270	0.0300	0.0318	
Lithuania	0.0365	0.0399	0.0450	0.0246	0.0326	0.0327	
Luxembourg	0.0418	0.0411	0.0448	0.0323	0.0319	0.0334	
Hungary	0.0352	0.0358	0.0346	0.0261	0.0243	0.0287	
Netherlands	0.0763	0.0815	0.0921	0.0365	0.0384	0.0387	
Austria	0.0674	0.0669	0.0660	0.0336	0.0324	0.0326	
Poland	0.0417	0.0423	0.0473	0.0273	0.0304	0.0347	
Portugal	0.0773	0.0759	0.0760	0.0279	0.0273	0.0325	
Romania	0.0303e	0.0321e	0.0347e	0.0256e	0.0259e	0.0317e	
Slovenia	0.0553	0.0547	0.0572	0.0309	0.0318	0.0339	
Slovakia	0.0421	0.0427	0.0449	0.0282	0.0289	0.0342	
Finland	:	:	:	0.0463	0.0561	0.0627	
Sweden	0.1212	0.1153	0.1183	0.0413	0.0481	0.0397	
United Kingdom	0.0469	0.0465	0.0493	0.0251	0.0262	0.0282	
Liechtenstein	0.0826	:	:	0.0509	:	:	
North Macedonia	0.0482	0.0407	0.0598	0.0260	0.0270	0.0323	
Serbia	0.0321	0.0335	0.0335	0.0310	0.0321	0.0390	
Turkey	0.0258	0.0216	0.0199	0.0187	0.0176	0.0211	
Bosnia and Herzegovina	0.0307	0.0326	0.0335	0.0343	0.0356	0.0367	
Moldova	0.0308	0.0254	0.0297	0.0263	0.0242	0.0265	
Georgia	:	0.0151	0.0151	:	0.0213	0.0230	
Ukraine	0.0231	0.0209	0.0267	0.0262	0.0246	0.0258	

(:) not available

(p) Provisionnal

(e) Estimate

(c) Confidential

(1) Annual consumption: 5 555 kWh < consumption < 55 555 kWh (20 - 200 GJ).

(*) Annual consumption: 2 778 MWh < consumption < 27 778 MWh (10 000 - 100 000 GJ).

Source: Eurostat (online data codes: nrg_pc_202 and nrg_pc_203)

eurostat 🖸

Electricity prices for household consumers, first half 2019

(EUR per kWh)

(1) This designation is without prejudice to positions on status, and is in line with UNSCR 1244/1999 and the ICJ Opinion on the Kosovo Declaration of Independence.

Source: Eurostat (online data codes: nrg_pc_204)

eurostat O

0.18 -----0.16 0.14 0.12 -----0.10 -----0.08 0.06 0.04 0.02 0.00 Poland France Croatia Georgia Ukraine Finland Sweden -Czechia Moldova Bulgaria Estonia Hungary Romania Latvia Greece Austria Spain Portugal EU-28 Malta Ireland Cyprus Italy Turkey Serbia Belgium Norway North Macedonia Denmark Vontenegro Lithuania Netherlands Slovakia Euro area United Kingdom Iceland Kosovo (1) and Herzegovina -uxembourg Slovenia Germany Bosnia a Without taxes Taxes without VAT

Electricity prices for non-household consumers, first half 2019 (EUR per kWh)

(1) This designation is without prejudice to positions on status, and is in line with UNSCR 1244/1999 and the ICJ Opinion on the Kosovo Declaration of Independence.

Source: Eurostat (online data codes: nrg_pc_205)

eurostat O

Additional factors to be considered

Factors that determine the choice of an electrothermal process

ENERGY COST	40%
PRODUCT QUALITY	30%
SIMPLICITY'	10%
PROCESS AUTOMATION	8%
MATERIAL SAVING	7%
FLEXIBILITY	5%

Outlook and further considerations

Energy efficiency and sustainability pass through an increasing use of electricity in all industrial processes, «food processing» too.

In this sense, electroheat technologies lend themselves to bringing innovation to the various production processes in all sectors including agrifood, increasing production rate and the quality of final products and decreasing process energy costs.

It is necessary to start from an analysis of the state-of-art and then perform a feasibility study to arrive at defining the true competitive advantages that derive from the use of electroheat technologies in terms of economic and environmental sustainability and quality of the final products.