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Abstract

This thesis investigates the application of modern and advanced optimal control
techniques within the realm of an innovative sports application. Specifically, the
application involves the use of an autonomous clectric go-kart towing a plexiglass
airshield, utilized to isolate Olympic athletes performing the 100 meters event from
the drag influence during the overspeed training phase. The primary objective of
this thesis is the deployment of a suitable controller for autonomously regulating
the go-kart and the airshield in response to the position and the velocity of the
runner during a sprint performance. The main contribution of this work lies in the
development of different controllers to address the desired task: a Gain Scheduling
Linear Quadratic Regulator and a Linear Model Predictive Controller. However,
since a linear kinematic model has been used as the foundation for the controllers
design, the real dynamic behaviour of the go-kart with the airshield is not per-
fectly described. Specifically, the developed controllers are strongly model-based,
and non-perfectly modeled dynamics effects or unknown disturbances could lead
to suboptimal performance of the control architecture. To address this issue, an
Offset-free Model Predictive Control scheme has been introduced as a third control
formulation. To demonstrate the effectiveness of the implemented controllers, in
this thesis they have been tested utilizing both Python simulations and hardware-
in-the-loop tests. A comparison of the controllers performances is presented and
analyzed within the framework of Python simulations utilizing data taken from 100
meters professional athletes’ competitions. For the hardware-in-the-loop tests on
the physical system, an implementation based on the ROS 2 environment has been
conducted. Several on-field experiments have been carried out in real-world settings
to understand the performances of the controllers when operating with information
coming from sensor measurements. This application holds significant potential for

everyday use during training phases on the track and field racetrack.
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Introduction

Motivations

In recent decades, the integration of advanced technologies has become an integral
facet of sports, introducing a new era of innovation and performance enhancement
[1]. In sports characterized by high-speed competition, where victories are often
determined by fractions of a second, the advancements in technology have revolu-

tionized performance across various disciplines.

The development of streamlined swimsuits with advanced materials reduces drag
and enhances buoyancy, leading to faster times in competitive swimming events. Ski
manufacturers utilize materials like carbon fiber and titanium in ski construction,
resulting in lighter yet more stable skis that offer better control and responsiveness
on the slopes. The incorporation of carbon fiber also into athletic footwear has
not only reduced weight but also enhanced energy return and propulsion, while

concurrently reducing the risk of injury.

The exploitation of technology to improve performances is not only used for com-
petitions but also during the training phase. In the track and field context, several
training techniques have been used for the enhancement of running speed. Among
several possibilities, overspeed training involves performing exercises or movements
at a velocity higher than what the athlete can achieve through voluntary effort in
classical environmental conditions. Many methods for experiencing supramaximal
velocities during training have been proposed: the usage of assistance mechanisms
such as bungee cords or sleds is analized in [2] and is found to be potentially danger-
ous for sprinters, requiring body contact with an external tool. Performing sprints
on a downward slope allows athletes to accelerate beyond typical maximal speed
due to assistance provided by gravity force [3].

In the context of gaining a training edge in sprint events, the concept of aero-
dynamic drag resistance assumes a great importance. Accordingly sprinters metic-

8



INTRODUCTION 9

ulously refine their body position, posture, and apparel to minimize aerodynamic
drag. For this reason CONI (Italian National Olympic Committee) Institute of
Sports Science presented in 2021 an aerodynamic shield to drastically reduce the
resistance to forward movement during sprinters’ training [4]. This shield allows
athletes to run in the slipstream behind a car pulling the shield, experiencing speeds

higher than those of the competition but with the same power output.

Advancements in automated driving technology have created opportunities for
many fields, and autonomous vehicles (AVs) have become increasingly prevalent.
Given their versatility and potential to enhance efficiency and convenience, it’s nat-
ural to consider their application in the realm of sports. Similarly to user-cooperative
robots, designed to stay in direct contact with humans and assist them in several
situations, an autonomous vehicle has been designed for driving the aerodynamic
airshield. Furthermore, intelligent control algorithms have shown huge advantages
in autonomous system control, taking into account factors such as control error,
bound constraints on system actuators, disturbance rejection and safety guarantees.
Additionally, control algorithms can be designed to continuously monitor and ana-
lyze data from various sensors in real-time, enabling them to detect and respond to
potential hazards or deviations from safety protocols more effectively than human
operators.

This thesis is the result of an abroad internship in ETH (Eidgendssische Technis-
che Hochschule) Ziirich, with the purpose of designing a proper controller to regulate
an autonomous go-kart pulling a plexiglass airshield, according to the runner’s be-

haviour.

Literature

Numerous control techniques have been used in recent decades to enhance the ef-
ficiency of AVs in several different contexts. Longitudinal control of automated
vehicles has received attention since the 1960s, and possibly even earlier. In [5],
a historical review of advanced vehicle control systems and longitudinal control of
automated vehicles is presented. The control of vehicle acceleration to achieve a de-
sired speed profile, an essential key point of longitudinal control, is the main purpose
of this thesis.

The initial and simplest approach adopted to control the go-kart, which must
maintain a constant reference position and velocity relative to the runner behind it,
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involved a cascade of two Proportional-Integral-Derivative (PID) controllers. The
first PID controller regulates the kart’s position and generates a reference velocity
for the second controller, a velocity PID.

While PID controllers are widely used in industrial applications due to their
straightforward implementation, they were not the optimal choice for this appli-
cation. The main challenges of this control scheme include difficulty in parameter
tuning, in handling multi-variable processing, and in addressing the initial phase
of motion, where the runner’s acceleration exceeds the kart’s maximum capability,

together with the impossibility of predicting the future motion of vehicle.

The application requires the go-kart to maintain a consistent desired position
and velocity relative to the runner. This task is quite similar to adaptive cruise
control (ACC), where the goal is to maintain a safe distance from the vehicle ahead

while also adjusting the speed to match changing traffic conditions.

Thanks to the capability of optimal controllers to cover multiple objectives and
to predict future vehicle behaviour, Linear Quadratic Regulator (LQR) and Model
Predictive Control (MPC) have been widely used for vehicle control in interacting
contexts. In [6], distance and relative velocity between preceding and controlled
vehicles are used as states to design an LQR controller that gives acceleration of the
controlled vehicle as input, in such a way to minimize a proper cost function. Model
Predictive Control is also largely used thanks to its capability of controlling a multi-
variable process while satisfying a set of state and input constraints. According to
[7], the essential elements of this controller are a prediction model that allows future
predictions, the definition of an objective function reflecting the desired system
behaviour, and constraints on both state and input. In the framework of MPC for
adaptive cruise control, in [8], the same state and input variables than in [6] are used
but constraints can be also incorporated. Differently, in [9], the controlled vehicle’s
velocity is added as a third state and the acceleration of the preceding vehicle is
included in the prediction model, regarded as an unknown external disturbance.

The MPC approach is strongly model-based in the sense that uses a model
of the system to produce predictions of the system behaviour. The presence of
uncertainties in this model may lead to unsatisfying results of the control task.
For this reason, [10], [11] show offset-free MPC formulations able to achieve output
tracking of reference signals despite the presence of Model-Plant Mismatch (MPM).
For this purpose an augmented predictive model added with an artificial constant

disturbance that represents modeling uncertainties is used. To estimate both state
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ad disturbance from output measurements a disturbance observer must be properly
designed and added in conjunction with feedback control law. Accordingly to [12],
by appropriately including a disturbance estimate in a control law, MPM effects
can be approximately removed in steady-state and offset-free tracking of constant
references can be achieved.

Contributions

The main contribution of this thesis lies in the analysis and implementation of linear
controllers for an innovative autonomous driving go-kart, which is used to tow the
airshield during the training of Olympic athletes participating in the 100 meters
event. Specifically, the thesis proposes and compares three different control schemes

in terms of performances and control architecture.

A linear kinematic model approximating the go-kart and the airshield dynamic
behaviour has been utilized as the basis for the design of the predictive controllers.
This linear model approximates, based on simplifying assumptions, a more complex
nonlinear model. The first step in control development involves the design of a
Linear Quadratic Regulator (LQR) with a gain scheduling approach, where Q and
R parameters vary depending on the motion phase. This gain scheduling approach
addresses the challenges associated with the different maximum accelerations of the
kart and of the runner in the first phase of motion. Subsequently, a Model Predictive
Control (MPC) is designed with the purpose of incorporating information on the
runner’s future expected behaviour into the linear prediction model. Furthermore,
since MPC is highly model-based, a disturbance observer and Offset-free MPC have
been implemented with the purpose of increasing the accuracy of the predictive
model and obtaining a zero-offset in tracking piece-wise affine (PWA) reference

trajectories.

The depicted workflow highlights how the control scheme architecture has been
simplified starting from the two control loops governing the cascade of PID con-
trollers. The gain scheduling LQR, which switches between two different control
gains depending on the motion phase, just makes use of two different regulators.
Ultimately, this thesis culminates in a single MPC controller capable of governing
the system under all possible operating conditions, integrating information about
the future evolution of the runner’s velocity profile into the prediction model to

further enhance tracking performance.
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Both controllers have been developed and tested in simulation using Python and
on the real system using ROS 2 environment.

Organization

This section provides to the reader a guide to the organization of the thesis.

In Chapter 1 a theoretical background and an overview of the fundamental op-
timal control theory and methodologies used in the control design are presented.

Chapter 2 is focused on discussing the problem set-up, in presenting a proper
linear approximation of the system dynamics and in the formulation of the optimal
control techniques to accomplish the desired task. In particular a Gain Scheduling
Linear Quadratic Regulator (LQR) and a Model Predictive Control (MPC), in the
specific context of this application, are presented.

Chapter 3 shows the numerical results of the controllers application obtained
in Python simulation environment. A comparison of the performances in different
scenarios is presented.

Chapter 4 gives a description of the go-kart and airshield mechanical structure,
hardware components and sensors. The hardware-in-the-loop tests, based on a ROS
2 implementation and conducted in a real-world scenario, are presented and dis-

cussed. This demonstrates the real effectiveness of the proposed methodologies.



Chapter 1

Optimal Control theory: Linear
Quadratic Regulator and Model
Predictive Control for controlling

dynamical systems

In this chapter the aim is to provide the necessary theoretical background in optimal
control before introducing the design choices and process. In particular, the main
peculiarities and limitations of the implemented controllers: the Linear Quadratic
Regulator (LQR) and the Model Predictive Control (MPC) are presented.

Optimal control theory provides a mathematical framework for addressing con-
trol theory problems by optimizing control laws with respect to given cost functions,
in order to achieve optimal system regulation.

Such theoretical analysis is essential for fully comprehending the features and
performances of the LQR and MPC controllers discussed later in Chapter 2 within
the specific context of the considered application.

1.1 Linear Quadratic Regulator

In 1960, Kalman introduced for the first time the linear-quadratic feedback con-
trol, which later evolved into the Linear Quadratic Regulator (LQR) [13] in the
continuous-time context. The LQR is a feedback control algorithm designed to sta-
bilize and optimize the performance in cases where the dynamical system can be
described by linear equations and the cost function is quadratic in terms of the states

and inputs.

13
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Assume that the process to be controlled can be described by a discrete-time
LTT dynamical system, such as the following state-space form:

2141 = Az, + By, (1.1)

yr = Cy
where z; € R™ is the actual system state, u; € R™ is the system input and
y; € RP is the measured output, all considered at a certain discrete time instant £.
The state at the subsequent time instant ¢ + 1 is referred to as x 1.
A€ R™™ and B € R™™ are the state and input matrices, respectively. In the
context of this thesis, it is possible to assume the full state information is available,
thus the input matrix C' € RP*" is the identity.

The main goal of the control task is to achieve optimal regulation of the sys-
tem’s states towards the origin. The notion of optimality, in this context, is framed
within a quadratic objective function. The LQR problem, therefore, can be viewed
as a multi-objective optimization task, where the goal is to simultaneously minimize
competing objectives. For example, minimizing the deviation of the system’s states
from desired values may require higher control effort, and vice versa. In the con-
text of multi-objective optimization, the challenge lies in finding a balance between
these conflicting objectives and this always involves making trade-offs to achieve a

satisfactory solution.

The Infinite Horizon Linear Quadratic Regulator problem is defined as follows:
find the optimal control input u,, V¢ € [0,00) that makes the following quadratic
criteria as small as possible

+o0o
J(x,u) = thTth—i-utTRut (1.2)
=0

where () € R™"™ and R € R™™ are symmetric positive-definite weight matrices.

The vector w, also known as input trajectory, consists of the input elements,
ie. u = {ug,uy,...} and x, the state trajectory, consists of the states along the
infinite time horizon, i.e ® = {x1,2s,...}. The cost function in (1.2) can be seen
as the mathematical formulation of the trade-off between the two objectives to be
minimized. Specifically, the term x] Qz; penalizes deviations of the system’s states
from desired values, while u, Ru; penalizes excessive control effort. The weights of
@ and R, typically chosen as diagonal matrices, can be adjusted to find solutions
that strike an appropriate balance between minimizing state deviations and control
effort.
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The overall LQR problem can be mathematically translated into the following

optimization problem:

+oo
. T Tp,
min E r, Quy +u, Ruy
' t=0

(1.3)
subj. to x4 = Axy + Buy t=0,1....

Lo = Tinit
where T € R™ is the initial condition of the system at time ¢ = 0.

Assuming the pair (A, B) to be controllable and the pair (A, C) with Q = CTC
to be observable, the following holds:

e there exists a unique positive definite P, solution of the following equation
called Algebraic Riccati Equation (ARE)

Pe=Q+A"PxA— A"PuB(R+ B PoB) ' BT P A. (1.4)

e exploiting the first-order necessary and sufficient conditions for optimality, the

optimal control law is a closed-form solution, feedback of the state
uy = Ky (1.5)

with
K =—(B"P.B+ R (B"P,A) (1.6)
and it is able to asymptotically stabilize the system.

The pair (z}. ) is the optimal state and input at discrete time instant .

Despite the fact that one of the main applications of LQ optimal control is
regulation, this strategy can be used to track a desired system behaviour as closely as
possible, in the framework of Linear Quadratic Tracking (LQT) [14]. To incorporate
the desired behaviour to be tracked in the objective, the problem can be written as:

+oo
min Z(lt — LL’tdes)TQ(ZL’t — wt,des) -+ ’LL;FR’LLt

= (1.7)
subj. to x4 = Az + Buy t=0,1....
Ty = Tinit

where 2, 4o« € R™ is the reference state value we want our system’s states to track
at time .
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The cost function quantifies the controlled system’s performance, defined as a
weighted sum of the deviations of the system’s states from desired values and control
effort.

In the context of tracking a given desired state behaviour z;ges at time ¢, the
optimal feedback control law is modified in the following way:

*

Uy = K(xt - l:t,des) (18)

where the term x; — 4 4es is the tracking error at time ¢.
The effectiveness of LQR lies in its ability to leverage the full state information
of the system, enabling precise and efficient control.

1.2 Linear Model Predictive Control

Model Predictive Control (MPC) is a modern control strategy well known for its
capacity to provide optimized responses while accounting for state and input con-
straints, such as saturation limits. These constraints can be explicitly integrated
into the control design, enhancing the robustness and performance of the system.
The origin of MPC trace back to the mid-seventies to mid-eighties, initially emerg-
ing in industrial applications. However, it was not until the nineties that MPC
theory underwent significant advancements, leading to its widespread adoption and

refinement.

MPC relies on the provided dynamic model to predict the behaviour of the system
and determine the optimal control action based on the chosen performance criteria.
A key aspect of MPC design is selecting a suitable model, one that adequately
describes the system’s dynamics while maintaining simplicity to ensure tractability

and real-time solvability of the optimization problem.

The description of the linear discrete-time system prediction model, used in the
MPC formulation, is the same shown in (1.1).
For what regards the states and inputs constraints they can be expressed as

follows:

rp €X Vt=0,1,... (1.9)
weld Vt=0,1,... (1.10)
where the state set X is closed and the input set i/ is compact and non-empty.

Usually, the sets are described with linear inequalities, and both sets are convex and

contain the origin.
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Figure 1.1: Model Predictive Control receiding horizon scheme

Similarly to the LQR case, Model Predictive Control aims to minimize a cost
function by defining positive definite matrices () and R. The goal is to find the
optimal control input that, at each time instant ¢, minimizes a cost function taking

the following form:
+o00
J(x,u; x4, t) = ZthQazm +uiT|tRuZ-|t (1.11)
i=t

In this formulation, x;; represents the predicted state a time ¢, given the initial
state x; = xy;. Similarly, u,; is the predicted control sequence at current time ¢

found by considering the entire future predicted trajectory for the system.

The aforementioned formulation represents the infinite horizon MPC problem,
which in many practical cases results challenging to be implemented or requires
highly demanding computations. For this reason, usually MPC formulations opti-
mize only on a finite horizon N, thus the problem of tracking x4.s with the system’s

states becomes:

t+N—-1
min 37 (o~ we) T Q (i — )+l Ruge
i=t
Ty € X

Tilt = Tmeas (t)

The control law is applied based on the receding horizon principle, which is a key
feature of MPC. This principle dictates that at each time instance t, the open-loop
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optimal control problem (1.12) is solved using the current state of the plant Zyeqs as
the initial state for the optimization problem. All predicted states and inputs within
a prediction horizon N are optimized to find an optimal input sequence. However,
only the first input of the optimal control sequence generated by the optimization
is injected into the plant. This input is used to control the system over the next
time step. This procedure is repeated, as illustrated in figure 1.1, at each time
instance, and by continuously updating the control action based on the most recent
information, MPC ensures that the control strategy adapts to changes in the system

dynamics and external conditions over time.

1.3 Offset-free Model Predictive Control and Dis-

turbance Observer

Regulating nonlinear systems using a linear predictive control framework can be
a complex task and the model-plant mismatch due to the unmodeled nonlinear
dynamics effects, can result in suboptimal performances of the controller.

Even if MPC is able to react to small unmodeled dynamics effects through its
receding-horizon fashion, it does not inherently incorporate them into its predictions
or optimization. As a consequence, MPC solves an optimal control problem at
each time step using the nominal model of the controlled process. Only when the
actual plant behavior closely matches the nominal model can the feedback control
scheme be guaranteed to stabilize the system and achieve precise tracking of desired
setpoints without any offset.

Offset-free Model Predictive Control represents an advanced control strategy
designed to address this limitation. Its objective is to achieve zero steady-state
tracking errors in the controlled system, even in the presence of disturbances or
model uncertainties causing model-plant mismatch. For instance, in the context of
regulating nonlinear systems using a linear predictive control framework, offset-free
MPC seeks to regulate the system to its desired setpoint without steady-state error,

ensuring precise and accurate control performance.
Consider a discrete-time, time-invariant system describing the plant;:

Ln,t+1 = fm(wm,tv ut) (1 13)

Ymit = hm (xm,t)
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where z,,,; € R", u; € R™ and y,,; € R? are the state, input and measured output
of the plant at time ¢, respectively.

The aim of the offset-free model predictive controller is to have v, tracking a
certain reference signal 94,5 € R? that is assumed to asymptotically converge to a

constant.

Let w € R™ and v € RP be defined as follows:
W= fo(Tm,uy) — (Ax + Bu)

v = hy(z,) — Cz (L14)

Here, w € R™ represents the model mismatch between the nonlinear plant model and
the linear predictive model, while v € R™ represents the output mismatch between
the predicted output and the real measured plant output. The A, B and C matrices

are the ones mentioned in the linear model (1.1).

The key feature of this offset-free control strategy lies in the incorporation of a
disturbance model in the prediction model (1.1). This disturbance allows to capture
the mismatch between the linear prediction model (1.1) and the nonlinear plant
(1.13) in steady state, thus the w term, and to consider it inside the optimization.

The steps to be followed to obtain an offset-free MPC formulation are the fol-

lowing;:

1. Introduce an augmented prediction model with an additional integrating state
known as disturbance, to model the model-plant mismatch

2. Design a state and disturbance estimator based on the augmented model

3. Modify the MPC formulation into an offset-free one, considering the estimated
disturbance in the formulation

Each point will be properly explained in detail in the following.

Augmented model with disturbance

As mentioned earlier, the first step is to introduce an augmented model for com-
puting the system’s predictions in the offset-free MPC framework. This augmented
model can generally be written in the following form:
Typ1 = Axy + Buy + Bad,
diy1 = dy (1.15)
yi = Cry + Cad,
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where the additional state d; € R™  known as disturbance state or simply distur-
bance, is assumed to be constant and follows an integral dynamics, as proposed by
[15]. The pair (Bg4, Cy), where By € R"*" and C,; € R™*", can be seen as the dis-
turbance model matrices. The maximum dimension of the disturbance state must

be equal to the number of measured outputs, i.c. ng < p.

Disturbance observer and estimator

Assuming observability of the augmented system (1.15), an estimator that contin-
uously estimates the augmented state (z,d) can be designed. An example could
be a linear disturbance observer, which uses the prediction error between the real
plant output and the predicted one to estimate the augmented state. This can be
described by the following dynamical system:

i’ﬂ_l A Bd Ii’t B Lx [ fi’t
= i + —yme+ O C) [
[dtﬂ o 1|ld| |ol" [Ld (Zoms 414l o
= Ae l:t + Be U+ L(_ym,t + Ce :L;t )
t t

where # € R™ and d € R™ are the state and disturbance estimates.
The matrices A, € Rvtna)x(ntna) - B e Rntna)xm and O, € RP*(nd) gre the

following:

A By B
e = , ., = , C.=1C Oy . 1.17
. . [exen (1.17)
The I € R(T1a)*P matrix is described as follows:
L,]
L= [ (1.18)
Ly

The system in (1.16) estimates, at each time instant ¢ the unknown disturbance
(i.e. the model-plant mismatch in this context) in addition to the plant states. The
estimation is performed evaluating the prediction error between the measured plant

output and the predicted one.

Offset-free MPC formulation

Given the current estimates of the augmented state (Z;, zft) at discrete time ¢, the
classical MPC formulation is modified into an offset-free MPC formulation.
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The estimated variables (&, a?,t) are used as initial states for the MPC optimiza-
tion problem at the current solving time instant ¢t. The augmented model in (1.15)
is employed as prediction model: the disturbance is included both as a constant
state and in the state evolution equation.

The resulting formulation is the following one:

t+N—-1
1}3111{1 Z (@i — ft)T Q (i — T¢) + (U — ﬂt)T R (wiy — 1)
i=t
subj. to w1 = Az + Buye + Badyye t=0,1...N
e Tl (1.19)
l‘i|t eX
Uj|t celu
Ty = Ty
dt|t = At
where Z; € R" and @; € R™ are solution of the following system:
A-T B| |z —Byd
- aft (1.20)
C 0 Ut Ydes — Cddt

In this system, the coefficient matrix or left-hand side matrix, represents the
dynamics of the system according to the linear model (i.e. the (A, B, C') matrices),
while the right-hand side vector incorporates the disturbance model (i.e. the (Bg, Cy)
matrices), the estimated disturbance d and the desired plant reference setpoint yges.
This system may be in general overconstrained, implying that there may not exist
a solution that satisfies all equations exactly. In this cased the solution is typically

found using the least square method with the pseudoinverse.

Luenberger observer design

In this offset-free MPC formulation, the nominal augmented state (x, d) needs to be
estimated at each time instant, given the plant output measurement y,,, according
to the dynamical estimator system in (1.16).

The L, € R and Ly € R"*P observer gain matrices in (1.16) need to be
designed in such a way the estimator to be stable, while the method doesn’t matter

for our purposes.

Two possible common choices for state estimators are the Luenberger observer
and the Kalman filter. Specifically, in the context of this thesis, the Luenberger
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observer has been employed. It updates the state prediction computed at time ¢ — 1
using the current measured plant output y,, at time ¢ as in the following:

.'f?t = A.f?t,1 + B?I/t,1 + L(ym,t — @t) (121)

where ¢; := C(AZ;_1 + Buy—1). The difference (y,+ — 9:) is referred to as the

estimation error or correction term, and L € R™*? is the observer gain.

If the pair (A..C.) in (1.16) is observable, then the eigenvalues of (A, + LC,)
can be placed arbitrarily to ensure stability of the estimator dynamical system.
Typically, the desired eigenvalues for (A, + LC,), i.e. the poles of the estimator
dynamical system, are chosen to be smaller than those of the controlled stabilized
system to ensure the estimator to be faster than the controller.



Chapter 2

Design of Optimization-based
Controller for autonomous

airshield

This chapter will begin with a description of the go-kart plant model and its linear
approximation, which is utilized in the design of the predictive controllers.

Later on, a detailed description and explanation of the design choices and formu-
lations of both the controllers within the context of the sport application: the Linear
Quadratic Regulator (LQR) and the Model Predictive Control (MPC), nominal and

with Offset-free version.

2.1 Go-kart kinematics model

The non linear model utilized to describe the motion of the go-kart is a bicycle
kinematic model, illustrated in figure 2.1. The 2D bicycle model can be seen as a
simplified car-like vehicle model that closely approximates the motion of a four-wheel
vehicle in normal driving conditions.

The mathematical equations are the following:

(4(1) = o(t) cos(u(t) + (D)

(1) = v(t)sin(u(t) + 4(0)

9t = " sin((0) >
o) = k jr(f)

where = = [x,y,1,v] is the state vector, where the components are respectively

23
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YAO

.‘ >
W X

Figure 2.1: Kinematic bicycle model of the vehicle

the = and y world frame coordinates, 1 is the heading angle with respect to the
reference frame, and v is the total speed of the vehicle.

The longitudinal force F) acting on the vehicle is modeled as a single force
applied to the center of gravity and is computed as a combination of the drive-train

command and the velocity.

Fy(t) = (Cpny — Crpv(t))a(t) — Cpo(t) — Cqv*(t) — Cron (2.2)
B(t) = arctan (tan <lf :r_ lef(t))) . (2.3)

The inputs of this system are u = [a, d7] where a is the drive-train acceleration and
dy is the front steering angle. The variable /3 represents the slip angle at the center

of mass.

The model has two parameters, [; and [, which represent the distances from the
centre of mass to the front axle and rear axle, respectively.

The mass m = 300 Kg includes both the kart and the trailer weight, while
ly = 1, = 0.8 meters. The other parameters of this model have been identified as
reported in table 2.1.

The identified coefficients represent:
e (., : rolling coefficient modeling the wheel friction on the road surface

e (; : coeflicient modeling acrodynamic resistance or drag
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e (y : coefficient modeling the dynamic friction resistance

e (1 : coefficient associated with the force component due to the driving torque
of the vehicle

e (5 : coeflicient associated with the force component due to both the torque

and the velocity

Cm1 | 930
Cno| O
¢, | 10
C, |15

Cron | 73

Table 2.1: Identified parameters for bicycle model

According to the estimated values the (2.2) can be rewritten as follows:
F,(t) = Cpaa(t) — Cpo(t) — Cqv*(t) — Croll (2.4)

The physical actuation limits on the input variable a can be expressed as box

constraints of the following type:
Gynin S a S Amax (25)

The coefficients reported in table 2.1 are identified in such a way to have @, = 0

and a,,.; = 1 as actuation limits for the motor torque.

2.2 Linear approximation of the go-kart model

The system under analysis is specifically designed for overspeed training of Olympic
runners. In this type of high-energy demanding training, athletes focus on executing
short sprints of approximately 50 — 60 meters along the straight section of an oval-
shaped racetrack. For this reason, it is reasonable to consider only the longitudinal
motion of the vehicle along one direction and not taking anymore into account
the steering degree of freedom. Moreover, the go-kart is designed such that an
onboard driver must be present for safety reasons and to control the steering when
mancuvering the go-kart back to the starting line of the sprint. Differently, the
throttle is controlled in a completely autonomous manner.
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Given this context of rectilinear motion, the complex dynamics of the go-kart in
in (2.1) can be simplified. The simplified go-kart plant model (2.6) is focused solely
on the vehicle’s longitudinal dynamics and the equations are the following ones:

(t)

2.6
B _ L (Gnalt) - Cpott) - Cor®(t) — Crun) >

p(?)
o) = =

where p indicates the position of the vehicle along an arbitrarily oriented direction.

|
S

Upon closer examination of the simplified model, it can be observed that a proper
linear approximation of (2.6) can be found and used for the longitudinal controller
design. The only nonlinear term is in fact the one related to the drag coefficient
in the equation describing the longitudinal force. Assuming that in the context of
this application, the velocities the kart exploits during the motion are relatively low,
consequently the influence of this nonlinear term is expected to be minor.

Accordingly, continuous-time dynamics equations of the linear approximation

model can be obtained by simply removing the nonlinear term:

iy (2.7)
o) = 28 _ Lo aw) - cpot)

m m

The Forward Euler method is employed to discretize the continuous-time dy-

namical system:
Yer1 = Yo+ dt - [y 1) (2.8)

where f is the continuous-time dynamics function and dt is the discrete-time step
size, the distance between two consecutive discretization steps. This method allows
us to transition from continuous-time dynamics to discrete-time dynamics, facilitat-
ing digital control implementation.

It is possible to write the resulting linear discrete-time, time-invariant system as

follows:
Dhtt1 = Dit + dtvgy
C C (2.9)
Up 41 = Upt +dt < mlut - —ka,t>
m m
And moving into the state space form it can be rewritten as:
N | Pee| |1 dt - 0 y
. Vk,t+1 01— dt% ot dt% ' (2.10)

= Az, + Buw
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where x;, = [py, vx] " are the kart state variables expressing respectively the kart
position and velocity respectively, and « = a is the control input of the system,
while dt is the sampling step used for Euler forward integration.

This linear model provides a suitable basis for designing longitudinal controllers.

2.3 Gain Scheduling Linear Quadratic Regulator

design

Consider that at each time instant, the runner state z,, = [p,, UT]T is known, where p,
represents the absolute runner position and v, indicates the absolute runner velocity.
At cach time instant ¢, the desired state for the go-kart is given by:

o Dr + ddes
Lh,des =
Uy

(2.11)

where dg.s denotes the reference distance between the kart and the runner. Using
this reference, the closed-form control law in (1.8) is applied to obtain the optimal

unconstrained solution u*, at each time instant.

While Model Predictive Control explicitly incorporates constraints into the opti-
mization problem, Linear Quadratic Regulator does not provide a direct mechanism
for handling constraints. Constraints can be indirectly addressed by penalizing their
violation in the cost function, but it’s still possible to deal with generated control
actions that violate the physical limits, described in (2.5). To address this issue, the
unconstrained control actions computed by the LQR controller has been ”clipped”
as follows:

U = satia, ., amee] () (2.12)

The value @* can be referred to as the clipped-unconstrained optimal LQR control
action. While clipping enables straightforward constraint handling, it may lead to
suboptimal performance as the controller may operate at constraint boundaries.
Therefore, alternative approaches such as MPC may be preferred for systems with

stringent constraint requirements.

From a control architecture perspective, a gain scheduling approach has been
introduced in the control scheme. A gain scheduling controller dynamically switches
between different control laws or gains based on certain operating conditions or
parameters. In the context of this thesis one of two different LQR controllers is
selected and used to regulate the system to the desired reference value. They will
be explained in details in the following.
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LQR controller

Xk, err K, — . »
[pr 't]ddes] = Xk des H CATCH u o v .Kan
, Kcruise — " J (Nonlinear plant)

Gain Scheduling

Kart
(Linear Model Approximation)

X, Xi

Runner

Figure 2.2: Linear Quadratic Regulator control scheme

2.3.1 Catch-up maneuver

The most challenging phase of the motion occurs in the first few seconds when the
runner accelerates faster than the maximum acceleration the kart can achieve. This
phase, known as the ’catch-up manecuver’, necessitates implementing a safety mea-
sure to prevent potential collisions between the airshield and the runner. Therefore,
the runner begins the sprint from a position several meters farther from the kart
than the steady-state desired distance dges.

Hence, the initial condition for the kart state is set to be the following:

ddes + CZ]

Lk, init =

) (2.13)

where d is a parameter dependent on the runner’s expected acceleration along the
performance.

During the catch-up phase, the control action is governed by the controller gain
Keaten computed using the following weighting matrices:

40 0

Qcatch = [O 1000

] ) Rcatch = [2] (214)

As evidenced by the weight selection, the primary objective during the catch-up
maneuver is to match the go-kart velocity with that of the runner. To facilitate
this objective, a significantly higher weight is assigned to the second state variable.
This weights configuration enables the kart to start accelerating at its maximum
capability, even if the runner remains at a distance greater than the desired value
dges- Such an approach prevents unsafe scenarios where the runner’s higher velocity
could lead to a collision with the shield.
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2.3.2 Cruise maneuver

Once the alignement, between the kart and runner velocity is achieved, typically at
an 80% match, the controller switches to K use. This controller assigns nearly equal
importance to distance and velocity mismatch. While a preference for the velocity
state persists, the significance given to the kart’s position relative to the runner’s is
significantly increased.

The weight matrices for this cruise control configuration are as follows:

800 O

) Rcruise = [0002] (215)
0 4000

chuise = [

This setup enables a rapid and substantial reduction in the relative distance to the
desired value once the velocities of the go-kart and runner are already aligned. Once
the desired value dges is reached, the Kise controller and its corresponding control
law are able to maintain the system around the desired operating conditions.

The overall control scheme is illustrated in figure 2.2, while algorithm 1 outlines
the steps followed by the LQR algorithm while controlling the system.

Algorithm 1 LQR implementation
1: catched = false;

2: Set initial runner position with a proper distance d from kart;
3: fort=0,1,2,... do;

4 Take kart state information z; = [prs, vis] ;

5: Take runner state information x,; = [pys, vrs]

6: Compute corresponding desired state for kart og ¢ ges = [Prt + ddes, vm]T;
7 if v > 0.8v,; and catched = false then

8: catched = true;

9: end if

10: if catched = false then

11: U = —Keateh (Tt — Thtdes);

12: else

13: U = —Kervise (Tht — Thit des);

14: end if

15: Clip input according to saturation limits @* = satya,, 4., (©*);
16: Inject 4* in the plant;

17: end for
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2.4 Model Predictive Control design

The primary purpose of the Model Predictive Control scheme design lies in the
possibility of including constraints, in the incorporation of a runner model within
the predictive framework and in the simplification of the overall control architecture.
The gain scheduling approach, which switches between two controllers depending on
the operational conditions, can be replaced with a single MPC controller. Addition-
ally, explicitly including constraints in the MPC formulation enables the encoding of
safety guarantees within the control scheme. Examples of such constraints include
maintaining a minimum safety distance or imposing bounds on maximum velocities

to mitigate the risk of injuries.

Consider the linear model approximation (2.10) for the go-kart dynamics, and in-
troduce the following integrator model for the runner, considered as an autonomous

system:

T, = Drt + dt Uy
{p 4+1 = DPrt i (2.16)

Upgg1 = Upy +dlayy
This model assumes constant acceleration for the runner, providing a simplified yet
effective representation of his behavior.
Incorporating this assumption, we define the augmented state for the MPC pre-

diction model as:

Ap
T, = | Av (2.17)
U
where Ap := pr — p, and Av := v, — v, represent the relative distance and velocity
between the kart and the runner at a given time, respectively.
The overall prediction model, in discrete-time, state-space formulation can be

written as follows:

Apiiq 1 dt 0 0 0
o1 = | Avigr | = 101 _dt% T+ [dtE2 | w4+ | —dta,,
Uk t41 0 0 1-— dt%i dt% 0 (2.18)
= A,z + Byu +
where
1 dt 0 0
A= 10 1 —dtt | Be= |t (2.19)

0 0 1-dts dt G
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The runner’s actual acceleration a,; is considered to be known and introduced
in the prediction model as a linear affine term that allows the predictions to better
fit with the real future runner behaviour. This term, relative to the actual runner
acceleration can be seen as the introduction of a known disturbance in the system,
thus the term a; = [0, —dta,.;,0]".

The optimal control problem solved at each discrete time instant, in a receiding

horizon fashion, has the following formulation:

t+N—1
: T T
min Z (Tpjilt — Tpdes) Q (Tpjit — Tp.des) + Uy By

i=t

subj. to @y i1 = Ap 2pip + By wip + ay t=0,1...N (2.20)
Appin < Uq|¢ < Omax
dsafe < Apz\t
Tptlt = Tpmeas

where the reference values for the prediction states are the following
ddes
Tpdes = | 0 (2.21)
0

and dgag 18 a minimum distance between go-kart and runner, ensuring a safe situa-

tion.

The parameter N defines the prediction horizon, representing the number of
control intervals the controller must evaluate for prediction. Selecting this parameter
requires careful consideration, as increasing the lenght of the prediction horizon also
increases the complexity of solving the optimization problem. This problem could
have important consequences in systems having fast dynamics, where the number of
prediction steps is limited by the processor power. At the same time the prediction
horizon has to be chosen long enought to adequately capture the system dynamics.
The optimal input sequence, obtained by repeatedly solving the optimizaton problem
at each time step, is represented as u* € R™* V.

The weights in the cost function are less sensible to changes with respect to those

used in the LQR formulation and are chosen as follows:

5 0], R=10.02 (2.22)
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MPC controller
[d((t)es} =x Optimizer % Kart
= Xp,des Nonlinear plant
o ( plant)
Prediction
Linear Model
Px — Pr
Ve = Vr| = Xp,meas X
Vg
X

Runner

Figure 2.3: Model Predictive Control scheme

The last element in the ) matrix is chosen to be equal to zero since there is no
reference for the absolute kart velocity. Consequently, the third state is not taken
into account in the cost function of the optimization problem. However it is kept in
the state vector because it makes possible to write the prediction model in an easier

way.

Algorithm 2 MPC implementation

. Define desired prediction state @, des = [dges, 0,0] ;

. Set initial runner position with a proper distance d from kart;
:fort=0,1,2,... do

Take prediction state information z,; = [Ap;, Avy, vg ] T

=Wy

Solve the constrained QP and get u* = {ug,u}, -+ ,ui};

Inject the first element of the optimal input sequence wg in the plant;

e«

end for

The overall MPC control scheme is shown in figure 2.3, and it offers an impor-
tant semplification in the architecture, with respect to the LQR case in figure 2.2.
Algorithm 2 outlines the steps of the MPC implementation.
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2.5 Offset-free Model Predictive Control and Dis-

turbance Observer design

The MPC problem, as formulated in (2.20) employs as prediction model a lincar
affine approximation of the kart dynamics (see (2.10)), augmented with the runner
model in (2.16). However, this prediction model does not take into account the
nonlinear term arising from the drag coefficient present in the identified kart dynamic
equations in (2.6). The true nonlinear prediction model for MPC, thus, should
incorporate the additional nonlinear term, as in the following:

Apiiq 1 dt 0 0 0 0
= Cf Cmy — Cd 2 Croll
AUt+1 = (0 1 —dtm Tpt + de Ut + —dt(lnt dt(ﬁvk,t -+ T)
wea] 000 -] o 0 ] LGt + S
(2.23)

where the last term includes the nonlinear and unmodelled drag effect, repre-
sented by the w term in (1.14), signifying the model-plant mismatch within the
offset-free MPC context.

Since MPC derives its solution based on the linear model in (2.18), the per-
formance of the controller inherently depends on the magnitude of the unmodeled
effects. Therefore, achieving optimal closed-loop performance using the nominal
MPC formulation may be challenging. Offset-free MPC is designed to handle this
kind of situations where there are discrepancies between the nominal model used for
prediction and the actual plant dynamics.

Data-driven control strategies, on the contrary, do not rely on models and can im-
plicitly manage uncertainties in processes. However, pure data-driven approaches,
without any prior assumption about the process, necessitate extensive data and
typically employ slow exploratory techniques. Recent control methodologies blend
model-based techniques with data-driven approaches to overcome these limitations.
The reasoning used in this thesis to compensate for the model-plant mismatch term,
combines a predictive control based on the linear prediction model with a real-time
estimation and compensation of the nonlinear term based on data from the system.
This control strategy dynamically estimates discrepancies using the prediction er-
rors, capturing the difference between the model’s predictions and the actual system
response.

Although offset-free MPC can mitigate model-plant mismatch, estimating in
real-time the disturbances via an observer introduces a delay. This delay may result
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in disturbance compensation being optimal only at steady-state and not during

transient phases when the disturbance varies.

Considering the problem statement presented in (2.27), the affine term that takes
into account the runner acceleration, has been added, similar to the nominal MPC
case.

The augmented prediction model in (1.15), necessary to the offset-free formula-
tion is applied and it results to be:

Tpt+1 = Ap Tp.t + Bp U + ay + Bd dt

(2.24)
dt+1 = dt

where the matrices A,, B, and the vector a; are defined in (2.19) and d; is a scalar.

The term By = [0,1,1]" signifies that the disturbance affects only in the second
and third states, while the relative position prediction model remains unaffected by
the mismatch with the plant. For the purposes of this thesis the state is considered
to be fully observable (i.e. C' = I3) and, as a consequence, the reference for the
measured plant output is translated in reference for the plant states, thus yges =
Tp.des = [daes, 0,0] . Accordingly also Cy = [0,0,0]".

The design of the observer plays a crucial role in enhancing the robustness of the

proposed control scheme and it becomes:

${)’t+l = Ae SE{)’t + Be U+ L(_xp,t + Ce zljvt ) (225)
dt+1 i t dt
where _
A, B B
Ae = P ¢ ) e — ¢ ) Ce = |:I3 O] : (226)
0 1 0

The observer gain matrix L is designed in such a way the poles of (A, + LC.)
are placed in A = [0.5,0.51,0.52,0.53], ensuring the resultant matrix to be Hurwitz.
The same weighting matrices ) and R utilized in the nominal MPC context are

employed as weights.

The final resulting offset-free formulation can be summarized in the following
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Offset-free MPC controller

[d%es] =x ———— Optimizer ua Kart
= Xp,des Nonlinear plant]
0 ( plant)
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g

Vs Pk — Pr

. vy — V| =
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>

x \

Figure 2.4: Offset-free Model Predictive Control scheme with disturbance observer

constrained optimization problem:

t+N—1

Tillgl E (Tpie — ) Q (Tpie — o) + (ugge — )" R (e — 1)
i=t
Sllbj. to xp.i+1|t = Ap Jl'p,i\t + Bp ui|t + ay + Bd dz|t t= O, 1...N

diyae = dys (2.27)

Apin < Usg|t < Gmax

dsate < Apz|t

Tptr = Ty

dyr = d

where 7; € R" and @; € R™ are solution of the following system:
Ap—1Is By| |&| _ | —Bady (2.28)
I3 0| |u Zp.des — Cady

In figure 2.4 the block diagram of the proposed offset-free MPC with disturbance
observer implementation is represented and algorithm 3 describes the point of both
estimation and control followed by the scheme.
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Algorithm 3 MPC Offset-free implementation

1: Define desired prediction state z ges = [daes, 0,0] '

2: Set initial runner position with a proper distance d from kart;

3: Initialize estimator &, = [dges, 0,0] " and dy = 0;

4: fort=0,1,2,... do

5: Take state estimator and disturbance observer information z,,; and th;
6 Solve the constrained QP and get u* = {u, uj, -, ui};

7 Inject the first element of the optimal input sequence g in the plant;
8 Update state estimator and disturbance observer

end for

Ne

2.6 Fluid-dynamic studies

Fluid dynamics is a branch of physics that deals with the study of how fluids (liquids
and gases) behave when they are in motion. In the context of sports engineering,
fluid dynamics plays a crucial role in understanding the interaction between athletes
and the surrounding air or water during their performance.

Aerodynamics, a subfield of fluid dynamics, specifically focuses on the study
of how moving objects interact with the air. The drag force, a key parameter in
acrodynamics, quantifies the resistance encountered by an object as it moves through
a fluid like the air. It can be expressed mathematically using the drag equation:

1
Fy= 5CdpA v? (2.29)

where F} is the drag force, p is the density of the fluid (air in this case), A is the
frontal area of the object moving in the fluid, v is the velocity of the object ad Cjy
the drag coefficient. One notable characteristic of drag force is its dependence on
the square of the velocity (v?), indicating that the resistance experienced by the

object increases exponentially with its speed.

Recent fluid-dynamic studies and simulations, conducted using wind tunnels
and advanced computational methods by [4], have investigated the impact of the
acrodynamic shield on the variation of the acrodynamic force acting on a runner
across speeds ranging from 5 to 13 meters per second.

As depicted in figure 2.5, when the air moves over the shield fails in following the
curvature of the surface, and results to be reparated into two different flows. This
phenomenon is called flow separation. This results in the formation of vortices and
regions of recirculating flow, creating a significant low-pressure region behind the



CONTROL DESIGN 37

Velocity (m/s)
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0.0000 4.8932 19.573

Figure 2.5

shield. Interestingly, this acrodynamic configuration not only reduces air friction
experienced by the athlete but also generates a pushing force from behind, align-
ing with the athlete’s movement. Consequently, the athlete benefits from both a
reduced air resistance and a propulsive force, potentially enhancing its speed and

performance.

According to these results, the reference distance dg.s to be maintained between
the runner and the kart can be assumed to be around 2.5 meters, thus the athlete
should be able to run on the airshield border or in the slipstream up to a couple
of meters further. In the following, for both the simulations and the real hardware
tests, a dges 0of 2.5 meters and dgyge of 1.5 meters are utilized.



Chapter 3
Numerical simulation results

The primary objective of this chapter is to present and analyze the results of Python
simulations carried out on the nonlinear mathematical model of the go-kart with
the airshield attached. The simulations aim to mimic the behaviour of a runner
during a competition or a training by utilizing a proper velocity profile. The three
controllers: Linear Quadratic Regulator, Model Predictive Control and Offset-Free
Model Predictive Control have been tested and their performances are evaluated and
compared. Specifically, in section 3.1, the data utilized for the controllers simulation
tests are introduced. It describes how they have been obtained from real competition
results, together with a presentation of the parameters used for the comparison.
Section 3.2 and 3.3 are focused on finally evaluate and numerically compare the

controllers performances in two distinct scenario.

3.1 Test data and comparison parameters

To assess the performance of the controllers and evaluate the application’s behaviour,
empirical data from two presigious Diamond League competitions [16] have been
employed, focusing on the winners of the 100 meters sprint event both in the man’s

and women’s categories.

| 10m | 20m | 30m | 40m | 50m | 60m | 70m | 80m | 90m | 100m

t | 1.97 | 3.10 | 4.11 | 5.08 | 6.03 | 6.99 | 7.94 | 890 | 9.88 | 10.88
At | 197 |1.13]1.01] 097 | 095 | 0.96 | 0.95 | 0.96 | 0.98 | 1.00
v, | 5.07 | 8851 9.90 | 10.31 | 10.53 | 10.42 | 10.53 | 10.42 | 10.20 | 10.00

Table 3.1: Marie-Josee Ta-Lou - Diamong League Lausanne 30th June 2023

38
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In the case of the women’s 100m sprint event, data are taken from the compe-
tition held in Lausanne on June 30, 2023. The race saw Marie-Joseée Ta Lous as
winner and in table 3.1 are reported her timed intervals recorded at every 10 me-
ters. Based on these splits an average velocity for each 10 meters interval has been

computed in order to have a velocity runner profile over time.

| 10m | 20m | 30m | 40m | 50m | 60m | 70m | 80m | 90m | 100m
t [ 187 [2.80] 380 [ 4.67 [ 552 | 6.36 | 7.21 | 8.07 | 8.93 | 0.83
At | 1.87 [ 1.02 | 0.91 | 0.87 | 0.85 | 0.84 | 0.85 | 0.86 | 0.86 | 0.90
o, | 5.35 | 9.80 | 10.99 | 11.49 | 11.76 | 11.90 | 11.76 | 11.63 | 11.63 | 11.11

Table 3.2: Christian Coleman - Diamong League Eugene 16th September 2023

Likewise, a similar methodology has been applied to the men’s 100 meters com-
petition, which took place in Eugen on September 16, 2023. Christian Coleman
clinched victory crossing the finish line in 9.83 seconds. The detailed analysis of
Coleman’s performance and the corresponding average velocities derived from the
intervals times are reported in table 3.2.

12

10 s

Runner Velocity [Z]
(=)}

—— Christian Coleman
Marie-Josee Ta Lou
0 e Finish line

0 2 4 6 8 10 12 14
Time [s]

Figure 3.1: Velocities profiles used for simulation tests

The velocity profiles, obtained by interpolating the average velocities along time,
are illustrated in figure 3.1. The red dot denotes the moment when runners cross the
finish line. Subsequent to this event, the velocities are assumed to remain constant
until a simulation time of 15 seconds with the purpose of allowing for an evaluation

of the controllers’ steady-state performance.

The parameters used for the evaluation and comparison of the controllers’ per-
formances are the following:
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e Mean error (position and velocity): represents the average difference between
the desired reference value and the actual plant output over the simulation
period. It provides a measure of the overall accuracy of the controller’s tracking

performance.

e Integral Absolute Error (position and velocity): measures the cumulative sum
of the absolute errors between the desired reference value and the actual plant
output. It provides insight into the total deviation of the system’s response

from the desired trajectory.

e Minimum distance from kart: the concept is similar to the undershoot, thus it
quantifies the extent to which the system’s response deviates from the desired
trajectory. This parameter quantifies how close the runner goes to the kart

during the performance.

e Energy consumption: quantifies the amount of energy expended by the system
to achieve the desired tracking performance.

e Stead-state error: characterizes the residual errror between the actual output
and the desired reference value once the system has reached a stable operating
condition, with the kart tracking a constant velocity of the runner.

e "Rise” time to reach the desired reference distance dg.s: refers to the duration
taken by the system’s output to transition from the initial state to the desired
position setpoint. It represents the speed at which the system responds to
changes in the reference signal and it is indicative of the controller’s dynamic

responsiveness.

CVXPY and OSQP solver

The quadratic optimization problems in the Model Predictive Control (MPC) for-
mulations have been tackled using the CVXPY library [17], a mathematical frame-
work for solving optimization problems, along with the OSQP (Operator Splitting
Quadratic Program) solver [18]. CVXPY facilitates the expression of convex opti-
mization problems in a natural syntax that follows the mathematical formulations,
which are then automatically converted into the standard form required by var-
ious solvers. OSQP is a high-performance solver specifically designed for convex
quadratic programming problems, making it particularly suitable for applications in

control systems, robotics, and machine learning.
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3.2 Test on women velocity profile of Ta Lou
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Figure 3.2: Simulation results following Ta Lou velocity profile. The results for LQR (in
blue), MPC (in green) and Offset-free MPC (in red) are shown overlapped on the same

plot to appreciate the comparison among controllers
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The initial distance used for the simulation is d = 4 meters.

Both Table 3.3 and figure 3.2 clearly demonstrate that the LQR controller ex-
ibits poorer performance compared to the other controllers. Specifically, considering
the minimum distance between runner and go-kart, the LQR performs significantly
worse than the other two controllers and violates the safety distance state constraints
dsafe introduced in both the MPC formulations. Graphically, the region between the
dsage and the airshield border is indicated in figure 3.2a with a yellow arca. This one
represents an unsafe region for the controller to operate, since the distance between
the runner and the go-kart is too small to guarantee a safe condition. The border of
the airshield, thus the point where it is attached to the go-kart itself, is represented
by the grey area.

The LQR has also the highest mean values of position deviation (Ap) and ve-
locity deviation (Aw), indicating a less accurate tracking performance compared to
MPC and MPC Offset-free. Additionally, the fact that also the Integral of Absolute
Error (IAE) metrics for both position and velocity are higher, suggests poorer track-
ing accuracy over the entire simulation period. It’s noteworthy that the offset-free
version of the predictive controller achieves an almost zero steady-state error, sig-
nificantly smaller than the approximately 10-centimeters values obtained with the
other controllers. The three controllers show similar energy consumption over time.

| LQR | MPC | MPC Offset-free

mean(Ap) 0.8892 | 0.6867 0.6168
mean(Awv) 0.3987 | 0.2611 0.2522
IAE on Ap 13.2352 | 10.1978 9.1515
TAE on Av 5.9811 | 3.9176 3.7826
min(Ap) 1.1885 | 2.2371 2.3605
Energy consumption | 0.5208 | 0.5200 0.5207
Steady state error 0.1354 | 0.1079 0.0009
"Rise” time to dges 3.3 3.75 3.85

Table 3.3: Comparison of controllers performance: Ta Lou velocity profile

3.3 Test on men velocity profile of Coleman

It is reasonable that by intensifying the difficulty of the velocity profile from the
one of a female runner to the one of a male, the required initial distance from the
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Figure 3.3: Simulation results following Coleman velocity profile. The results for LQR
(in blue), MPC (in green) and Offset-free MPC (in red) are shown overlapped on the same

plot to appreciate the comparison among controllers

go-kart is going to increase. In the case of the Christian Coleman velocity profile

this value is set to d = 13 meters.
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| LQR | MPC | MPC Offset-free

mean(Ap) 2.5984 | 2.5636 2.4848
mean(Av) 1.0037 | 0.9392 0.9419
TAE on Ap 38.6465 | 38.1247 36.9459
TAE on Av 15.0578 | 14.0901 14.1308
min(Ap) 1.0802 | 1.6036 1.6105
Energy consumption | 0.5694 | 0.5694 0.5697
Steady state error 0.1689 | 0.1784 0.0350
”Rise” time to dges 4.5 4.7 4.7

Table 3.4: Comparison of controllers performance: Coleman velocity profile

When intializing the maneuver from a further distance compared to the previ-
ous scenario, higher values of mean position error and Integral Absolute Error are
observed, as reported in table 3.4. The performance of the controllers can be graph-
ically observed in figure 3.3. The value of the minimum distance reached between
the runner and the go-kart is much smaller for the LQR with respect to the two
MPC formulations also in this simulation, indicating that the athlete enters a larger
distance inside the shield. The recorded LQR value of 1 meter and 8 centimeters
violates the safety bound introduced in the MPC, similar to the observation made in
the Ta Lou velocity profile case. Furthermore, it’s worth noting that the offset-free
MPC consistently outperforms both LQR and MPC in terms of steady-state error,
achieving the lowest value among the three controllers.

It should be noticed that, in both the scenario saturation phenomenon is present
for a consistent part of the tracking with the LQR controller. Unlike MPC, which
respects actuator limits, the LQR controller exhibits saturation, meaning that the
control inputs are constrained to their maximum or minimum values for extended

periods. This can lead to suboptimal performance.

3.4 Disturbance observer results

In this section, the output of the disturbance observer and state estimator, for-
mulated in the state-space model in (2.26), are presented. The observer has the
capability to simultaneously estimate the states and the unknown disturbance, rep-
resenting the model-plant mismatch.

Figure 3.4 shows the three estimated state variables alongside their actual values
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Figure 3.4: Estimated state variables (dashed red line) and observed model-plant mis-

match term (dashed red line), compared to actual known values (black line)

in the case of Ta Lou simulation. It is important to notice the ability and precision
of the estimator in producing estimated values with only minor differences with
respect to the actual ones. Only minor delays, as highlighted in the subplot insets,
are present when fast changes in the actual state variables occur. These delays
stem from the Luenberger observer’s mechanism, which updates the estimated state
variables based on the prediction error.

Focusing on subfigure 3.4a, the initial value for the estimator was set to dges
without considering the d component relative and specific to the runner’s acceler-
ation intensity. However, the estimator quickly converges to the actual value and
compensates for the incorrect initialization. This rapid adjustment is facilitated
by selecting appropriate observer gain matrices, enabling the observer dynamical
system in (2.26) to have a proper trade-off between responsiveness and accuracy in
estimation.

In figure 3.4d, the observed disturbance is illustrated. This estimated disturbance
captures the model-plant mismatch between the nonlinear kart plant model and
the linear prediction model utilized for system control, as outlined in (2.23). This
term represents the component related to the drag effect in the go-kart dynamics.
Furthermore, the magnitude of the estimated disturbance tends to be higher when

the absolute velocity of the go-kart is elevated, gradually reaching a constant steady-



SIMULATION RESULTS 46

state value as the system stabilizes.

The effectiveness of the disturbance observer in capturing the model-plant mis-
match term is crucial, especially in the context of implementing offset-free Model
Predictive Control. By accurately estimating both the state variables and the dis-
turbance, the system can effectively compensate for discrepancies between the actual

plant behavior and the model predictions, ultimately enhancing control performance.



Chapter 4

Go-kart and Airshield Structure
and Hardware-in-the-loop

implementation

In this chapter an overview of the hardware structure and sensors equipment of the
go-kart and the airshield is provided together with the changes in the controllers
formulations with respect to the simulation environment. Later, an overview of
the technologies studied and used for the implementation on the hardware of the
control algorithms is presented. Finally, some test developed on the real hardware

are presented and their results are shown and analyzed.

4.1 Go-kart and Airshield structure

The system comprises a fully electric-powered go-kart with an attached airshield
structure via a fixed joint. According to the CIK-FIA (International Karting Com-
mission Federation International Automobile), a go-kart is a single-seater land ve-
hicle with four non-aligned wheels in contact with the ground, two of which control
steering while the others transmit power. Go-karts emerged after the post-war pe-
riod of the 1950s, originally created by airmen as a pastime. Typically, go-kart
chassis are constructed from steel pipes that provide both stiffness and flexibility to

compensate for the lack of a suspension system and a differential.

Electric-powered go-kart

The kart is a Sinuslon purchased from the German company RiMO (originally
Richter + Mohn).

47



HARDWARE TEST RESULTS 48

Figure 4.1: Airshield structure

The onboard battery is a lithium-iron-manganese-4-phosphate (LiFeMnPO4),
used in order to reduce the battery pack weight.

For what regards the motor it is a Heinzmann PMS 100, with air-cooled cooling
technology. This DC motor is a permanent magnet brushless motor with a link
voltage of 28V, a nominal speed of 6500 rpm and a rated torque of 3.82 Nm, repre-
senting respectively the rotational speed at which the motor is designed to operate
optimally and the maximum rotational force that the motor can exert. In terms of
efficiency, this motor is characterized with high efficiency and energy-saving capa-
bilities, with a rated power output of 2.6kW. This parameter reflects the motor’s
ability to convert electrical energy into mechanical power. The gearbox has a gear
ratio of 1:7.

The computer on board is a AMD Ryzen MinisForum EliteMini X500 with an
AMD Ryzen 7 5700G processor (8 cores with nominal frequency of 3.8GHz) coupled
with a 16GB DDR4 RAM.

Airshield

The shield has the structure shown in 4.1. All the side and front panels are made
of plexiglass while the top part is an aluminium composite.

The dimensions are reported in table 4.1. The height can be adjusted within
a range of approximately 13 centimeters by simply moving a wheel bracket up or
down, in order to better fit the height of the runner.
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Height 2.15m
Width 1.86 m
Lenght | 2.95 m

Table 4.1: Aishield dimensions

4.2 Perception

Autonomous vehicles sense and perceive the surrounding environment using mea-
surements coming from sensors and then process the information in order to make
informed decisions. This is the fundamental principle behind closed-loop control
that relies on measurements of controlled variables provided by an appropriate sen-
sor. The perception systems used in autonomous vehicles are usually categorized in

two groups:

e Proprioceptive sensors (or internal state sensors) sensing the vehicle’s own
state, like wheel encoders or inertial measurement unit, as well as location
sensors like GPS, etc.

e Exteroceptive sensors (or external state sensors) gathering informations about

the surrounding environment like cameras, LIDAR, RADARs, etc.

In this application the system is equipped with a LiDAR (Light Detection and

Ranging), a camera, an inertial measurement unit and wheel encoders.

LiDAR

LiDAR (Light Detected and Ranging) is a remote sensing technology that measures
distances to objects and surfaces using laser pulses. The sensor consists of three
main components: a laser emitter, a scanning mechanism, and a receiver. The
laser emitter sends out short pulses of laser light, which travel towards surrounding
objects. When these pulses encounter an object, they reflect off its surface and return
to the LiDAR sensor. The receiver than detects the reflected light and measures
the time it takes for the pulses to return, allowing the calculation of the distance
to the object based on the speed of light. Moreover, LiDAR sensors are capable of
operating in various environmental conditions including darkness, rain, fog or low
visibility, making them perfect for the application and highly reliable.

The LiDAR mounted on the airshield is a Velodyne VLP-16, a compact sen-
sor that features 16 laser channels arranged in a circular configuration to have an
important field of view.
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The field of view (angular extension of a scene that is projected by the laser
beam) is of 360° horizontal and 30° vertical. The range of the laser is up to 100
meters. Measurements have an accuracy of 4+/- 3 ¢cm and are acquired with a
frequency of 20 Hz.

Camera

Cameras provide rich information about the surrounding environment and can be
used in a variety of ways. On the airshield, a ZED 2i Stereo Camera with polarized
lens of 4 millimeters is mounted.

The field of view is of 120° and the camera is able to sense ranges between 1.5
meters and 35 meters. The depth accuracy is smaller of the 2% of the distance up
to 10 meters while it increases up to the 7% for distances up to 30 meters.

The camera is equipped with a Stereolab ZED Box Xavier NX 8GB, an industrial
compact and powerful mini PC used for computing and processing camera data. It’s
powered with an NVIDIA Jetson embedded GPU.

At the moment LiDAR measurements are prefered with respect to camera ones
thanks to the higher accuracy.

Figure 4.2: Gesture used to activate the automatic controller ones the runner is ready

to start the sprint

Camera remains responsible for the detection of the gesture to identify the mo-
ment in which the runner is able to start the performance. The recognition of this
gesture, in figure 4.2, produces the activation of the automatic controller for the

system.

Wheel Encoder

Rotary encoders are a type of sensor that measures the rotation of a mechanical
shaft. Two wheel encoders, one for each wheel, are integrated in the PMS 100 motor
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as speed sensors, providing the motor’s rotational speed. Then, by knowing that
the gear ratio is 1:7 and that the wheel diameter is 27.89 centimeters the absolute
go-kart speed can be evaluated using the following formula:

m-d-avg rate

Vkart — (4 1)

60 - gear ratio

where avg rate is the average motor rate between left and right sides.

Inertial Measurement Unit

Figure 4.3: IMU position on the go-kart

Typically an IMU or Inertial Measurement Unit consists of a combination of
accelerometers and a gyroscopes, and sometimes also magnetometers in order to
measure the orientation, velocity and acceleration of an object. Thanks to the
combination of accelerometers and gycopes, the IMU is able to sense the object’s
orientation or angular motion and acceleration with respect to some predefined axes.
The IMU used in the go-kart is the IRIMU-V2 from Izze-Racing that outputs data
at 200Hz via CAN protocol and has an accuracy of less than 1% of full scale for
the acceleration and less than 1.5% for the angular acceleration. The position with

respect to the go-kart centre of gravity is showed in 4.3.
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4.3 Controller design changes for hardware inte-

gration

In the context of the control implementation for the hardware-in-the-loop tests, the
available informations are the one coming from sensors and it is not possible to rely
on a full state knowledge for both runner and kart as hypotized in Chapter 2. For
this reason it is important to take into account the sensors present in the system and
the measurements provided by them to control the system properly. The changes
occurred in the Linear Quadratic Regulator and in the nominal Model Predictive

Control case are considered.

LQR

Differently from the simulation context, where all the state variables both for run-
ner and kart have been considered to be fully known, in the hardware-in-the-loop
context, absolute position of both kart and runner, as well as the runner absolute

velocity, result to be unknown.

LQR controller

- K, —

daol] hori CATCH . u* ok

Oes] = haes r ip : (Nonlir:(:a:: lant)
Kcruise — o

Gain Scheduling

Pr — Pr] _
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LiDAR

Figure 4.4: Linear Quadratic Regulator scheme with sensors

The LiDAR, as a range sensor, provides directly the measurement of the relative
distance between runner and kart Ap, while the relative velocity can be estimated

via finite differences:

Apy — Apy4

Av —
vt dt

(4.2)
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Algorithm 4 LQR implementation on hardware system

1: catched = false;

2: Set initial runner position with a proper distance d from kart;
3: Define desired system behaviour hge = [ddes, 0]7;

4: for t =0,1,2, ... do;

5: Take LiDAR information Ap; and estimate Awvy;

6 he = [Apy, Avg|"

7 Take absolute kart velocity v from wheel encoders;
8: Evaluate absolute runner velocity v,; = vg — Avy;

9 if vy > 0.8v,; and catched = false then

10: catched = true;

11: end if
12: if catched = false then

13: u* = —Keaten(hy — haes);

14: else

15: = —Keise(he — haes);

16: end if

17: Clip input according to limit saturation limits @* = sat(s, . au..(©*);
18: Inject @* in the plant;

19: end for
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where Ap; := p; — pry and Av, := vy — vy, and dt is the sampling time.

The closed loop control law in (1.8) can be modified as follows, to directly use the
measurments provided by the LiDAR to evaluate the feedback error and compute

the current control action:

u;y = K (hy — haes) (4.3)
where
A L, =
ht _ Dt _ DPit Dry 7 hdes _ ddes ) (44)
Aw, Vgt — Urt 0

The overall implementation of the LQR in the context of the real system is
described by algorithm 4, while the control architecture using the sensors for taking

the measurements is shown in figure 4.5.

MPC
MPC controller
Tdes = — 1 » Optimizer u6 ( Kart
8 = Xp.des P . L(Nonlinearplant)

Prediction
Linear Model

Prx — Pr
— V.| =

Vk Vr = Xp,meas
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Wheel
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LiDAR

Figure 4.5: Model Predictive Control scheme with sensors

In the context of the MPC formulation a similar scheme is employed, with the key
difference that the absolute kart velocity v, information is directly incorporated and
utilized in the prediction state, rather than solely by the gain scheduling to switch
among controllers, as was the case with the LQR formulation. The overall scheme
is illustrated in figure 4.5 highlighting a simplification of the control architecture
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compared to the LQR case in figure 4.4. In particular, the clip block is removed, and
actuator limits are introduced as constraints explicitly in the optimization problem.
Moreover, the two distinct regulators are replaced with a single controller capable

of effectively managing the system across various operating conditions.

It is important to notice that the actual absolute runner acceleration, added in
the prediction model (2.18) as an affine term, is estimated. Initially, the relative
acceleration between the kart and runner Aa is estimated, alongside the kart’s ab-
solute acceleration a;. The absolute runner acceleration used is then calculated as

a, = ar — Aa.

When handling sensor data, such as distance measurements from a LiDAR sen-
sor, it is important to recognize that these measurements are inherently noisy. In
attempting to derive velocity and acceleration from a noisy distance measurement,
the situation becomes even more complex since any noise present gets amplified by
applying the process of differentiation. For this reason, even if a Kalman filter-
ing tecnique for smoothing the absolute runner acceleration a, has been applied,
the quality of the estimation result is not accurate enought. This compromises
the MPC’s performance compared to simulation results. However, despite these
challenges, the controller still manages to achieve proper regulation performance
concerning the relative distance and velocity variables.

Algorithm 5 MPC implementation on hardware system

1: Define desired prediction state zdes = [daes, 0,0] '
2: Set initial runner position with a proper distance d from kart;
3: fort=0,1,2,... do

4: Take LiDAR information Ap; and estimate Awy;

5: Take absolute kart velocity v, from wheel encoders;

6: Xps = [Apy, Avg,ve]

7: Estimate the absolute runner acceleration a,

8:  Solve the constrained QP and get u* = {uj, uf, -+ ,uy};

9: Inject the first element of the optimal input sequence wg in the plant;
10: end for

Algorithm 5 explains the steps followed by the nominal MPC implementation on
the hardware system.
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4.4 Experimental tools

In this paragraph the tools used for the development of the controllers implementa-

tion on the real hardware system are briefly presented.

Robot Operating System

Robot Operating System (ROS) is an open-source middleware framework specifi-
cally designed for robotics research and development [19] of robotic applications.
Despite the name it is not a real operating system but it’s a collection of libraries,
tools and conventions that allow robotic developers to share, re-use and manage the
applications. Being a communication and middleware layer it serves as an important
intermediary layer between the operating system and software applications. One of
the key features of ROS is its modular architecture, which promotes code reuse and
modularity by breaking down robot applications into smaller, reusable components
called "nodes.” A node is an individual specific and independent program written
in Python or C++ that executes a specific task or function within the framework of
a more complex application. The nodes can communicate with each other using a
publish-subscribe messaging system, allowing for flexible and decentralized control
architectures. In particular nodes can publish messages to topics (publisher) and

other nodes can subscribe to these topics to receive and process the data (suscriber).

ROS, and in particular its successor ROS 2, offers numerous features and im-
provements that make it well-suited for driving autonomous systems and automated
driving projects. At the core of ROS 2 functionality lies the ability to run directly
on the onboard computer of autonomous systems, having Ubuntu pre-installed, pro-
cessing raw data coming from sensors and executing the proper control algorithms.
In this sense, one of the most notable innovations in ROS 2 is its ability to support
real-time capabilities, of fundamental importance when autonomous systems have

to perform safety-critical and time-sensitive applications.

Docker

Docker is an open-source platform that enables developers to package, distribute,
and run applications in lightweight, portable containers. These containers encap-
sulate all the dependencies and runtime components needed to run an application,
including the code, system tools, libraries, and settings. Docker containers are de-

signed to be isolated from each other and from the underlying host system, ensuring
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Figure 4.6: Organization of go-kart repository and docker container

consistent and reliable execution across different environments. The only thing pre-
venting a container from being able to stand alone is that it relies on the host’s
operating system (OS) and kernel for low-level services, such as resource manage-

ment and network access.

Go-kart repository

In image 4.6 a graphical representation of the layers starting from the computer’s
infrastructures and the operating system, up to the repository, is shown. In partic-
ular, the autonomous go-kart repository consists of four different images. The first
one is the Ubuntu 20.04 base image with ROS 2 installed and is the base for the
other go-kart repositories stack. This layer manages the installation of the common
libraries, the ROS 2 communication between the hardware components (sensors and
actuators) and the software applications contained in the other three higher-level
images. The communication is achieved through the ad-hoc definition of messages.

The go-kart logs is the repository responsible for data analysis. Specifically, it
interprets and decodes binary sensor data into a numerical format that is meaningful
and can be understood and processed by other software applications, such as control
algorithms. In this application, binary signals are converted into CSV files.

The go-kart interface repository is responsible for interfacing with hardware,
serving as the intermediary layer between the operating system and the hardware.
Drivers read messages from ROS topics, enabling hardware components (such as
LiDAR, cameras, motors, etc.) to execute requested actions.

Finally, the go-kart core contains all the high level applications, such as the

controller. Several C++4 packages for estimation, control, or visualization exist in
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order to execute various tasks in a modular and reusable manner.

CasADi and qrSQP solver

For the hardware implementation of the ROS 2 controllers packages, CasADi to-
gether with qrSQP solver were utilized. CasADi (Computer Algebra System for
Automatic Differentiation) [20] serves as a symbolic framework designed for auto-
matic differentiation and numerical optimization. It facilitates the representation of
mathematical expressions symbolically, crucial for modeling complex control systems

efficiently.

4.5 Hardware-in-the-loop implementation and tests

In this section some hardware-in-the-loop tests developed are presented and ana-
lyzed. First of all the model utilized for the controllers development has been de-
mostrated to reproduce enough accurately the behaviour of the system when moving
rectilinearly.

The sequence of images in figure 4.7 are taken from a video, recording the be-
haviour of the nominal Model Predictive Controller running on the real system. It
can be noticed, from the first line of images, that the runner has started the sprint
some meters further from the border of the airshield. Accorgingly, the focus of the
test was on the first phase of the motion that is accomplished in a safe manner.

In figure 4.9 the plots related to this test are presented. The first two panels
(4.9a and 4.9b) demonstrate the controller’s ability to regulate the system to the
desired reference values: a 2.5 meters reference distance between the go-kart and
the runner and an almost zero velocity mismatch. Analyzing the third panel 4.9c,
it can be noticed that the input is oscillating between the upper and lower actuator
limits even after having reached the reference distance and velocity, thus when the
system shoul be around a steady-state condition. This oscillatory behaviour was
not evident during the developed numerical simulations. The primary reason of
these oscillations is attributed to the inaccurate estimation of the absolute runner
acceleration, as illustrated in figure 4.9d.

Additionally, as depicted in figure 4.8, the system demonstrates its capability to
maintain a cruise condition once the runner has reached an almost constant speed.

Following the completion of the catch-up maneuver, the controller maintains the
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=]

Figure 4.7: Sequence of images taken from a video, showing a catch-up maneuver regu-
lated with MPC
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Figure 4.8: Sequence of images taken from a video, showing a tracking regulated with
MPC
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cruise control with the runner moving at nearly constant velocity. This test serves
to validate the system’s robustness, particularly in the face of the challenging task
of dealing with the innacurate runner acceleration estimate. Despite this limitation,
the controller demonstrates a robust behaviour by avoiding evident oscillations in
terms of the reference distance. The pratical behaviour of the system remains reliable
in real-world scenarios, thanks to the ability of maintaining stable performance even

under imperfect conditions.

Addressing the acceleration estimation issue could involve several approaches for
improvement. One potential solution is the integration of an additional IMU sensor
on the runner’s body to provide direct measurements of the actual acceleration.
This approach would offer real-time data, potentially enhancing the accuracy of
the control system and resembling the simulation context. Alternatively, leveraging
data collected from runners’ training sessions and competitions could facilitate an
offline learning approach. By utilizing this data, a machine learning model could be
trained to predict the typical acceleration trajectory during a sprint. Implementing
such a model into the control system could help mitigate the effects of inaccurate

acceleration estimation, leading to smoother and more precise control performance.



Conclusions

In conclusion, this thesis has presented the development and implementation of
a controller for the innovative application of an autonomous driving go-kart in
the realm of sport, with the goal of improving the training of Olympics athletes.
Specifically, the study has proposed three different optimal model-based control ap-
proaches.

Initially, a mathematical formulation of the system dynamics and a proper linear
approximation was found.

In the control development workflow, the first approach utilized was a Gain
Scheduling Linear Quadratic Regulator technique, employing two different regula-
tors that can be used depending on the operational conditions. Subsequently, a
Model Predictive Control approach was introduced with the purpose of explicitly
incorporate constraints in the formulation, along with a model for the runner used
in the optimization and for the predictions. Additionally, an Offset-free Model
Predictive Control formulation, based on a disturbance observer, was introduced
to compensate for the model-plant mismatch present when controlling a nonlinear
system according to a linear prediction model.

A comparative analysis of the three controllers, implemented in Python simula-
tion environment, revealed the Offset-free Model Predictive Controller to outperform
the other controllers in terms of tracking error, particularly at steady state.

Globally, when implemented and tested on the real hardware in real-world con-
texts, both the Linear Quadratic Regulator and the Model Predictive Controller ex-
hibited satisfactory performance, enshuring that the system functions as expected
and achieves its intended objectives. It’s important to highlight the higher com-
putational effort required by the Model Predictive Controller, running an optimal
control problem at runtime, with respect to the Linear Quadratic Regulator utilizing
a precomputed error-state feedback control law.

With this work, a powerful tool has been developed that can be used to enchance
the overspeed training results in the track and field context. Despite these successes,

during hardware testing with the MPC controller, oscillations in the actuators were
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observed due to inaccurate estimation of the runner’s acceleration. The issue has
proposed some possible ways of future development for this work. An example could
be the usage of an additional sensor or the introduction of a learning techniques to
improve the estimation, in order to have an enhancement of the system’s perfor-

mances.
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